{"title":"布辛斯克方程的孤子解析猜想","authors":"C. Charlier , J. Lenells","doi":"10.1016/j.matpur.2024.103621","DOIUrl":null,"url":null,"abstract":"<div><div>We analyze the Boussinesq equation on the line with Schwartz initial data belonging to the physically relevant class of global solutions. In a recent paper, we determined ten main asymptotic sectors describing the large <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-behavior of the solution, and for each of these sectors we provided the leading order asymptotics in the case when no solitons are present. In this paper, we give a formula valid in the asymptotic sector <span><math><mi>x</mi><mo>/</mo><mi>t</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mi>M</mi><mo>]</mo></math></span>, where <em>M</em> is a large positive constant, in the case when solitons are present. Combined with earlier results, this validates the soliton resolution conjecture for the Boussinesq equation everywhere in the <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-plane except in a number of small transition zones.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"191 ","pages":"Article 103621"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The soliton resolution conjecture for the Boussinesq equation\",\"authors\":\"C. Charlier , J. Lenells\",\"doi\":\"10.1016/j.matpur.2024.103621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We analyze the Boussinesq equation on the line with Schwartz initial data belonging to the physically relevant class of global solutions. In a recent paper, we determined ten main asymptotic sectors describing the large <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-behavior of the solution, and for each of these sectors we provided the leading order asymptotics in the case when no solitons are present. In this paper, we give a formula valid in the asymptotic sector <span><math><mi>x</mi><mo>/</mo><mi>t</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mi>M</mi><mo>]</mo></math></span>, where <em>M</em> is a large positive constant, in the case when solitons are present. Combined with earlier results, this validates the soliton resolution conjecture for the Boussinesq equation everywhere in the <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></math></span>-plane except in a number of small transition zones.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"191 \",\"pages\":\"Article 103621\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424001193\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424001193","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们分析的是线上的布森斯克方程,其初始数据是属于物理相关的全局解类的施瓦茨初始数据。在最近的一篇论文中,我们确定了描述大 (x,t) 解行为的十个主要渐近区段,并为每个区段提供了不存在孤子情况下的前阶渐近公式。在本文中,我们给出了在存在孤子的情况下,在渐近区 x/t∈(1,M](其中 M 是一个大的正常数)有效的公式。结合之前的结果,这验证了布森斯克方程在(x,t)平面上除了一些小过渡区之外的任何地方的孤子解析猜想。
The soliton resolution conjecture for the Boussinesq equation
We analyze the Boussinesq equation on the line with Schwartz initial data belonging to the physically relevant class of global solutions. In a recent paper, we determined ten main asymptotic sectors describing the large -behavior of the solution, and for each of these sectors we provided the leading order asymptotics in the case when no solitons are present. In this paper, we give a formula valid in the asymptotic sector , where M is a large positive constant, in the case when solitons are present. Combined with earlier results, this validates the soliton resolution conjecture for the Boussinesq equation everywhere in the -plane except in a number of small transition zones.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.