具有剪切流的某些椭圆算子的主特征值的单调性、渐近性和水平集

IF 2.1 1区 数学 Q1 MATHEMATICS
Shuang Liu , Yuan Lou
{"title":"具有剪切流的某些椭圆算子的主特征值的单调性、渐近性和水平集","authors":"Shuang Liu ,&nbsp;Yuan Lou","doi":"10.1016/j.matpur.2024.103622","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the joint effects of diffusion and advection on principal eigenvalues of some elliptic operators with shear flow. Some monotonicity and asymptotic behaviors of principal eigenvalues, with respect to diffusion rate and flow amplitude, are established. These analyses lead to a classification of topological structures of level sets for principal eigenvalues, as a function of diffusion rate and flow amplitude. Our analytical results provide a unifying viewpoint to understand mixing enhancement and dispersal-induced growth, which are apparently two unrelated phenomena, one in fluid mechanics and the other in population dynamics. In our analysis, some limiting Hamilton-Jacobi equations, blowup argument and limiting generalized principal eigenvalue problems play critical roles.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"191 ","pages":"Article 103622"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monotonicity, asymptotics and level sets for principal eigenvalues of some elliptic operators with shear flow\",\"authors\":\"Shuang Liu ,&nbsp;Yuan Lou\",\"doi\":\"10.1016/j.matpur.2024.103622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the joint effects of diffusion and advection on principal eigenvalues of some elliptic operators with shear flow. Some monotonicity and asymptotic behaviors of principal eigenvalues, with respect to diffusion rate and flow amplitude, are established. These analyses lead to a classification of topological structures of level sets for principal eigenvalues, as a function of diffusion rate and flow amplitude. Our analytical results provide a unifying viewpoint to understand mixing enhancement and dispersal-induced growth, which are apparently two unrelated phenomena, one in fluid mechanics and the other in population dynamics. In our analysis, some limiting Hamilton-Jacobi equations, blowup argument and limiting generalized principal eigenvalue problems play critical roles.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"191 \",\"pages\":\"Article 103622\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002178242400120X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002178242400120X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了扩散和平流对一些具有剪切流的椭圆算子的主特征值的共同影响。我们确定了主特征值在扩散率和流动振幅方面的一些单调性和渐近行为。通过这些分析,我们得出了作为扩散率和流幅函数的主特征值水平集拓扑结构的分类。我们的分析结果为理解混合增强和分散诱导增长提供了一个统一的视角,这显然是两个互不相关的现象,一个是流体力学中的现象,另一个是种群动力学中的现象。在我们的分析中,一些极限汉密尔顿-雅可比方程、炸毁论证和极限广义主特征值问题发挥了关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monotonicity, asymptotics and level sets for principal eigenvalues of some elliptic operators with shear flow
We investigate the joint effects of diffusion and advection on principal eigenvalues of some elliptic operators with shear flow. Some monotonicity and asymptotic behaviors of principal eigenvalues, with respect to diffusion rate and flow amplitude, are established. These analyses lead to a classification of topological structures of level sets for principal eigenvalues, as a function of diffusion rate and flow amplitude. Our analytical results provide a unifying viewpoint to understand mixing enhancement and dispersal-induced growth, which are apparently two unrelated phenomena, one in fluid mechanics and the other in population dynamics. In our analysis, some limiting Hamilton-Jacobi equations, blowup argument and limiting generalized principal eigenvalue problems play critical roles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信