{"title":"德尔佩佐三折的分类托雷利定理新视角","authors":"Soheyla Feyzbakhsh , Zhiyu Liu , Shizhuo Zhang","doi":"10.1016/j.matpur.2024.103627","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> be a del Pezzo threefold of Picard rank one and degree <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. In this paper, we apply two different viewpoints to study <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> via a particular admissible subcategory of its bounded derived category, called the Kuznetsov component:<ul><li><span>(i)</span><span><div>Brill–Noether reconstruction. We show that <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> can be uniquely recovered as a Brill–Noether locus of Bridgeland stable objects in its Kuznetsov component.</div></span></li><li><span>(ii)</span><span><div>Exact equivalences. We prove that up to composing with an explicit auto-equivalence, any Fourier–Mukai type equivalence of Kuznetsov components of two del Pezzo threefolds of degree <span><math><mn>2</mn><mo>≤</mo><mi>d</mi><mo>≤</mo><mn>4</mn></math></span> can be lifted to an equivalence of their bounded derived categories. As a result, we obtain a complete description of the group of Fourier–Mukai type auto-equivalences of the Kuznetsov component of <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span>.</div></span></li></ul></div><div>In an appendix, we classify instanton sheaves on quartic double solids, generalizing a result of Druel.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"191 ","pages":"Article 103627"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New perspectives on categorical Torelli theorems for del Pezzo threefolds\",\"authors\":\"Soheyla Feyzbakhsh , Zhiyu Liu , Shizhuo Zhang\",\"doi\":\"10.1016/j.matpur.2024.103627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> be a del Pezzo threefold of Picard rank one and degree <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. In this paper, we apply two different viewpoints to study <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> via a particular admissible subcategory of its bounded derived category, called the Kuznetsov component:<ul><li><span>(i)</span><span><div>Brill–Noether reconstruction. We show that <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> can be uniquely recovered as a Brill–Noether locus of Bridgeland stable objects in its Kuznetsov component.</div></span></li><li><span>(ii)</span><span><div>Exact equivalences. We prove that up to composing with an explicit auto-equivalence, any Fourier–Mukai type equivalence of Kuznetsov components of two del Pezzo threefolds of degree <span><math><mn>2</mn><mo>≤</mo><mi>d</mi><mo>≤</mo><mn>4</mn></math></span> can be lifted to an equivalence of their bounded derived categories. As a result, we obtain a complete description of the group of Fourier–Mukai type auto-equivalences of the Kuznetsov component of <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span>.</div></span></li></ul></div><div>In an appendix, we classify instanton sheaves on quartic double solids, generalizing a result of Druel.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"191 \",\"pages\":\"Article 103627\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424001259\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424001259","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
New perspectives on categorical Torelli theorems for del Pezzo threefolds
Let be a del Pezzo threefold of Picard rank one and degree . In this paper, we apply two different viewpoints to study via a particular admissible subcategory of its bounded derived category, called the Kuznetsov component:
(i)
Brill–Noether reconstruction. We show that can be uniquely recovered as a Brill–Noether locus of Bridgeland stable objects in its Kuznetsov component.
(ii)
Exact equivalences. We prove that up to composing with an explicit auto-equivalence, any Fourier–Mukai type equivalence of Kuznetsov components of two del Pezzo threefolds of degree can be lifted to an equivalence of their bounded derived categories. As a result, we obtain a complete description of the group of Fourier–Mukai type auto-equivalences of the Kuznetsov component of .
In an appendix, we classify instanton sheaves on quartic double solids, generalizing a result of Druel.
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.