德尔佩佐三折的分类托雷利定理新视角

IF 2.1 1区 数学 Q1 MATHEMATICS
Soheyla Feyzbakhsh , Zhiyu Liu , Shizhuo Zhang
{"title":"德尔佩佐三折的分类托雷利定理新视角","authors":"Soheyla Feyzbakhsh ,&nbsp;Zhiyu Liu ,&nbsp;Shizhuo Zhang","doi":"10.1016/j.matpur.2024.103627","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> be a del Pezzo threefold of Picard rank one and degree <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. In this paper, we apply two different viewpoints to study <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> via a particular admissible subcategory of its bounded derived category, called the Kuznetsov component:<ul><li><span>(i)</span><span><div>Brill–Noether reconstruction. We show that <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> can be uniquely recovered as a Brill–Noether locus of Bridgeland stable objects in its Kuznetsov component.</div></span></li><li><span>(ii)</span><span><div>Exact equivalences. We prove that up to composing with an explicit auto-equivalence, any Fourier–Mukai type equivalence of Kuznetsov components of two del Pezzo threefolds of degree <span><math><mn>2</mn><mo>≤</mo><mi>d</mi><mo>≤</mo><mn>4</mn></math></span> can be lifted to an equivalence of their bounded derived categories. As a result, we obtain a complete description of the group of Fourier–Mukai type auto-equivalences of the Kuznetsov component of <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span>.</div></span></li></ul></div><div>In an appendix, we classify instanton sheaves on quartic double solids, generalizing a result of Druel.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"191 ","pages":"Article 103627"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New perspectives on categorical Torelli theorems for del Pezzo threefolds\",\"authors\":\"Soheyla Feyzbakhsh ,&nbsp;Zhiyu Liu ,&nbsp;Shizhuo Zhang\",\"doi\":\"10.1016/j.matpur.2024.103627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> be a del Pezzo threefold of Picard rank one and degree <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>. In this paper, we apply two different viewpoints to study <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> via a particular admissible subcategory of its bounded derived category, called the Kuznetsov component:<ul><li><span>(i)</span><span><div>Brill–Noether reconstruction. We show that <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> can be uniquely recovered as a Brill–Noether locus of Bridgeland stable objects in its Kuznetsov component.</div></span></li><li><span>(ii)</span><span><div>Exact equivalences. We prove that up to composing with an explicit auto-equivalence, any Fourier–Mukai type equivalence of Kuznetsov components of two del Pezzo threefolds of degree <span><math><mn>2</mn><mo>≤</mo><mi>d</mi><mo>≤</mo><mn>4</mn></math></span> can be lifted to an equivalence of their bounded derived categories. As a result, we obtain a complete description of the group of Fourier–Mukai type auto-equivalences of the Kuznetsov component of <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span>.</div></span></li></ul></div><div>In an appendix, we classify instanton sheaves on quartic double solids, generalizing a result of Druel.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"191 \",\"pages\":\"Article 103627\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782424001259\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424001259","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 Yd 是皮卡等级为 1、度数为 d≥2 的德尔佩佐三褶。在本文中,我们通过 Yd 有界派生类的一个特殊可容许子类(称为库兹涅佐夫分量),运用两种不同的观点来研究 Yd:(i)布里尔-诺ether 重构。我们证明,Yd 可以唯一地复原为其库兹涅佐夫成分中布里奇兰稳定对象的布里奇兰-诺ether 位置。我们证明,只要与明确的自等价构成,两个阶数为 2≤d≤4 的 del Pezzo 三维库兹涅佐夫分量的任何傅立叶-穆凯类型等价都可以提升为它们有界派生范畴的等价。因此,我们得到了 Yd 的库兹涅佐夫分量的傅里叶-穆凯类型自等价群的完整描述。在附录中,我们对四元双实体上的瞬子剪进行了分类,推广了德鲁尔的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New perspectives on categorical Torelli theorems for del Pezzo threefolds
Let Yd be a del Pezzo threefold of Picard rank one and degree d2. In this paper, we apply two different viewpoints to study Yd via a particular admissible subcategory of its bounded derived category, called the Kuznetsov component:
  • (i)
    Brill–Noether reconstruction. We show that Yd can be uniquely recovered as a Brill–Noether locus of Bridgeland stable objects in its Kuznetsov component.
  • (ii)
    Exact equivalences. We prove that up to composing with an explicit auto-equivalence, any Fourier–Mukai type equivalence of Kuznetsov components of two del Pezzo threefolds of degree 2d4 can be lifted to an equivalence of their bounded derived categories. As a result, we obtain a complete description of the group of Fourier–Mukai type auto-equivalences of the Kuznetsov component of Yd.
In an appendix, we classify instanton sheaves on quartic double solids, generalizing a result of Druel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信