Najam Ul Hassan , Nawishta Jabeen , Waqar Younas , Fahim Ahmed , Ahmad Hussain , Sana Ullah Asif , Majed M. Alghamdi , Muhammad Naveed
{"title":"通过微波合成的大表面积二维介孔硫化锌纳米片实现高效混合超级电容器性能","authors":"Najam Ul Hassan , Nawishta Jabeen , Waqar Younas , Fahim Ahmed , Ahmad Hussain , Sana Ullah Asif , Majed M. Alghamdi , Muhammad Naveed","doi":"10.1016/j.jelechem.2024.118794","DOIUrl":null,"url":null,"abstract":"<div><div>Researchers have shown a significant amount of interest in synthesizing high energy density supercapacitors using a simplest, fast, and low cost technique. The electrochemical performance of supercapacitors can be impacted by the surface area and morphology of electrode materials. A one-step, rapid, and economical microwave-assisted synthesis technique was employed in this study in order to prepare mesoporous nanosheets that are composed of zinc sulfide. The ZnS-based nanosheets possess a large surface area of ∼120 m<sup>2</sup>g<sup>−1</sup> and a mesoporous structure of a pore diameter of <22 nm, which offers numerous electrochemical active sites and it facilitates an excellent super capacitive performance, which is due to its shortened ion/electron diffusion path. The prepared mesoporous nanosheets exhibit a higher specific capacitance of 2282 Fg<sup>−1</sup> (1037 C/g) when subjected to a 1 Ag<sup>−1</sup> in 2 M KOH aqueous electrolyte with high capability rate. The fabricated device exhibits a high specific capacitance of 252.5 Fg<sup>−1</sup> (140 C/g) at 1 Ag<sup>−1</sup>, which produces a remarkable energy density of about 90 Whkg<sup>−1</sup> at 800 Wkg<sup>−1</sup> value of power density and an excellent retention of ∼95 % after 10,000 cycles at 6 Ag<sup>−1</sup>. This study designed an instant, straightforward and low-cost approach to fabricate ZnS nanosheet electrode materials that exhibit excellent performance for supercapacitor applications.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"975 ","pages":"Article 118794"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient hybrid supercapacitor performance enabled by large surface area of 2D mesoporous zinc sulfide nano-sheets synthesized via microwaves\",\"authors\":\"Najam Ul Hassan , Nawishta Jabeen , Waqar Younas , Fahim Ahmed , Ahmad Hussain , Sana Ullah Asif , Majed M. Alghamdi , Muhammad Naveed\",\"doi\":\"10.1016/j.jelechem.2024.118794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Researchers have shown a significant amount of interest in synthesizing high energy density supercapacitors using a simplest, fast, and low cost technique. The electrochemical performance of supercapacitors can be impacted by the surface area and morphology of electrode materials. A one-step, rapid, and economical microwave-assisted synthesis technique was employed in this study in order to prepare mesoporous nanosheets that are composed of zinc sulfide. The ZnS-based nanosheets possess a large surface area of ∼120 m<sup>2</sup>g<sup>−1</sup> and a mesoporous structure of a pore diameter of <22 nm, which offers numerous electrochemical active sites and it facilitates an excellent super capacitive performance, which is due to its shortened ion/electron diffusion path. The prepared mesoporous nanosheets exhibit a higher specific capacitance of 2282 Fg<sup>−1</sup> (1037 C/g) when subjected to a 1 Ag<sup>−1</sup> in 2 M KOH aqueous electrolyte with high capability rate. The fabricated device exhibits a high specific capacitance of 252.5 Fg<sup>−1</sup> (140 C/g) at 1 Ag<sup>−1</sup>, which produces a remarkable energy density of about 90 Whkg<sup>−1</sup> at 800 Wkg<sup>−1</sup> value of power density and an excellent retention of ∼95 % after 10,000 cycles at 6 Ag<sup>−1</sup>. This study designed an instant, straightforward and low-cost approach to fabricate ZnS nanosheet electrode materials that exhibit excellent performance for supercapacitor applications.</div></div>\",\"PeriodicalId\":355,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"975 \",\"pages\":\"Article 118794\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665724007720\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724007720","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Efficient hybrid supercapacitor performance enabled by large surface area of 2D mesoporous zinc sulfide nano-sheets synthesized via microwaves
Researchers have shown a significant amount of interest in synthesizing high energy density supercapacitors using a simplest, fast, and low cost technique. The electrochemical performance of supercapacitors can be impacted by the surface area and morphology of electrode materials. A one-step, rapid, and economical microwave-assisted synthesis technique was employed in this study in order to prepare mesoporous nanosheets that are composed of zinc sulfide. The ZnS-based nanosheets possess a large surface area of ∼120 m2g−1 and a mesoporous structure of a pore diameter of <22 nm, which offers numerous electrochemical active sites and it facilitates an excellent super capacitive performance, which is due to its shortened ion/electron diffusion path. The prepared mesoporous nanosheets exhibit a higher specific capacitance of 2282 Fg−1 (1037 C/g) when subjected to a 1 Ag−1 in 2 M KOH aqueous electrolyte with high capability rate. The fabricated device exhibits a high specific capacitance of 252.5 Fg−1 (140 C/g) at 1 Ag−1, which produces a remarkable energy density of about 90 Whkg−1 at 800 Wkg−1 value of power density and an excellent retention of ∼95 % after 10,000 cycles at 6 Ag−1. This study designed an instant, straightforward and low-cost approach to fabricate ZnS nanosheet electrode materials that exhibit excellent performance for supercapacitor applications.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.