Oleg I. Zaytsev , Margarita A. Belokozenko , Grigorii P. Lakienko , Eduard E. Levin , Victoria A. Nikitina , Sergey Y. Istomin
{"title":"铜锌合金实际表面积的电化学评估","authors":"Oleg I. Zaytsev , Margarita A. Belokozenko , Grigorii P. Lakienko , Eduard E. Levin , Victoria A. Nikitina , Sergey Y. Istomin","doi":"10.1016/j.jelechem.2024.118795","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate measurements of real surface area (RSA) are essential in fundamental electrocatalysis for evaluating the intrinsic activity of various materials. However, existing electrochemical methods for determining RSA values in metallic alloys, particularly those containing active metals, remain underexplored. This study critically assesses the efficacy of capacitance measurement techniques for calculating RSA values in copper-zinc alloys, which are commonly employed as electrocatalysts for CO<sub>2</sub> reduction. We investigate optimal conditions for estimating RSA through cyclic voltammetry, focusing on electrolyte selection and appropriate potential ranges to ensure reliable RSA assessments. Additionally, we emphasize the necessity of using suitable reference samples for accurate specific capacitance calculations. Our findings reveal that potential uncertainties arising from the use of inappropriate reference samples across different Cu-Zn compositions can reach an order of magnitude, rendering them unsuitable for electrocatalytic studies. This research highlights the need for robust surface area quantification techniques to reduce uncertainties in reporting the activities of alloy-based materials in various electrochemical applications.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"975 ","pages":"Article 118795"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical evaluation of the real surface area of copper-zinc alloys\",\"authors\":\"Oleg I. Zaytsev , Margarita A. Belokozenko , Grigorii P. Lakienko , Eduard E. Levin , Victoria A. Nikitina , Sergey Y. Istomin\",\"doi\":\"10.1016/j.jelechem.2024.118795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate measurements of real surface area (RSA) are essential in fundamental electrocatalysis for evaluating the intrinsic activity of various materials. However, existing electrochemical methods for determining RSA values in metallic alloys, particularly those containing active metals, remain underexplored. This study critically assesses the efficacy of capacitance measurement techniques for calculating RSA values in copper-zinc alloys, which are commonly employed as electrocatalysts for CO<sub>2</sub> reduction. We investigate optimal conditions for estimating RSA through cyclic voltammetry, focusing on electrolyte selection and appropriate potential ranges to ensure reliable RSA assessments. Additionally, we emphasize the necessity of using suitable reference samples for accurate specific capacitance calculations. Our findings reveal that potential uncertainties arising from the use of inappropriate reference samples across different Cu-Zn compositions can reach an order of magnitude, rendering them unsuitable for electrocatalytic studies. This research highlights the need for robust surface area quantification techniques to reduce uncertainties in reporting the activities of alloy-based materials in various electrochemical applications.</div></div>\",\"PeriodicalId\":355,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":\"975 \",\"pages\":\"Article 118795\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665724007732\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724007732","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Electrochemical evaluation of the real surface area of copper-zinc alloys
Accurate measurements of real surface area (RSA) are essential in fundamental electrocatalysis for evaluating the intrinsic activity of various materials. However, existing electrochemical methods for determining RSA values in metallic alloys, particularly those containing active metals, remain underexplored. This study critically assesses the efficacy of capacitance measurement techniques for calculating RSA values in copper-zinc alloys, which are commonly employed as electrocatalysts for CO2 reduction. We investigate optimal conditions for estimating RSA through cyclic voltammetry, focusing on electrolyte selection and appropriate potential ranges to ensure reliable RSA assessments. Additionally, we emphasize the necessity of using suitable reference samples for accurate specific capacitance calculations. Our findings reveal that potential uncertainties arising from the use of inappropriate reference samples across different Cu-Zn compositions can reach an order of magnitude, rendering them unsuitable for electrocatalytic studies. This research highlights the need for robust surface area quantification techniques to reduce uncertainties in reporting the activities of alloy-based materials in various electrochemical applications.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.