Elisa Bayraktarov , Samantha Low-Choy , Abhimanyu Raj Singh , Linda J. Beaumont , Kristen J. Williams , John B. Baumgartner , Shawn W. Laffan , Daniela Vasco , Robert Cosgrove , Jenna Wraith , Jessica Fenker Antunes , Brendan Mackey
{"title":"澳大利亚生态社区利用云计算建立虚拟实验室:满足用户对生态建模和决策的不同需求","authors":"Elisa Bayraktarov , Samantha Low-Choy , Abhimanyu Raj Singh , Linda J. Beaumont , Kristen J. Williams , John B. Baumgartner , Shawn W. Laffan , Daniela Vasco , Robert Cosgrove , Jenna Wraith , Jessica Fenker Antunes , Brendan Mackey","doi":"10.1016/j.envsoft.2024.106255","DOIUrl":null,"url":null,"abstract":"<div><div>Biodiversity decline and climate change are among the most important environmental issues society faces. Information to address these issues has benefited from increasing big data, advances in cloud computing, and subsequent new tools for analytics. Accessing such tools is streamlined by virtual laboratories for ecological analysis, like the ‘Biodiversity and Climate Change Virtual Laboratory’ (BCCVL) and ‘ecocloud’. These platforms help reduce time and effort spent on developing programming skills, data acquisition and curation, plus model building. Recently this functionality was extended, producing EcoCommons Australia—a web-based ecological modeling platform for environmental problem-solving—with upgraded infrastructure and improved ensemble modeling, post-model analysis, workflow transparency and reproducibility. We outline our user-centered approach to systems design, from initial surveys of stakeholder needs to user involvement in testing, and collaboration with specialists. We illustrate EcoCommons and compare model evaluation statistics through four case studies, highlighting how the modular platform meets users' needs.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"183 ","pages":"Article 106255"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EcoCommons Australia virtual laboratories with cloud computing: Meeting diverse user needs for ecological modeling and decision-making\",\"authors\":\"Elisa Bayraktarov , Samantha Low-Choy , Abhimanyu Raj Singh , Linda J. Beaumont , Kristen J. Williams , John B. Baumgartner , Shawn W. Laffan , Daniela Vasco , Robert Cosgrove , Jenna Wraith , Jessica Fenker Antunes , Brendan Mackey\",\"doi\":\"10.1016/j.envsoft.2024.106255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biodiversity decline and climate change are among the most important environmental issues society faces. Information to address these issues has benefited from increasing big data, advances in cloud computing, and subsequent new tools for analytics. Accessing such tools is streamlined by virtual laboratories for ecological analysis, like the ‘Biodiversity and Climate Change Virtual Laboratory’ (BCCVL) and ‘ecocloud’. These platforms help reduce time and effort spent on developing programming skills, data acquisition and curation, plus model building. Recently this functionality was extended, producing EcoCommons Australia—a web-based ecological modeling platform for environmental problem-solving—with upgraded infrastructure and improved ensemble modeling, post-model analysis, workflow transparency and reproducibility. We outline our user-centered approach to systems design, from initial surveys of stakeholder needs to user involvement in testing, and collaboration with specialists. We illustrate EcoCommons and compare model evaluation statistics through four case studies, highlighting how the modular platform meets users' needs.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"183 \",\"pages\":\"Article 106255\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224003165\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224003165","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
EcoCommons Australia virtual laboratories with cloud computing: Meeting diverse user needs for ecological modeling and decision-making
Biodiversity decline and climate change are among the most important environmental issues society faces. Information to address these issues has benefited from increasing big data, advances in cloud computing, and subsequent new tools for analytics. Accessing such tools is streamlined by virtual laboratories for ecological analysis, like the ‘Biodiversity and Climate Change Virtual Laboratory’ (BCCVL) and ‘ecocloud’. These platforms help reduce time and effort spent on developing programming skills, data acquisition and curation, plus model building. Recently this functionality was extended, producing EcoCommons Australia—a web-based ecological modeling platform for environmental problem-solving—with upgraded infrastructure and improved ensemble modeling, post-model analysis, workflow transparency and reproducibility. We outline our user-centered approach to systems design, from initial surveys of stakeholder needs to user involvement in testing, and collaboration with specialists. We illustrate EcoCommons and compare model evaluation statistics through four case studies, highlighting how the modular platform meets users' needs.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.