具有输入约束条件的次优 MPC 的迭代调节器

IF 2.1 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Jordan Leung, Ilya Kolmanovsky
{"title":"具有输入约束条件的次优 MPC 的迭代调节器","authors":"Jordan Leung,&nbsp;Ilya Kolmanovsky","doi":"10.1016/j.sysconle.2024.105962","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a supervisory scheme, called the iteration governor (IG), that augments a suboptimal input-constrained MPC policy by performing online selection of the reference command and the number of optimization iterations used to generate a control input. At each time step, an auxiliary reference command is selected so that the state is contained in a region of attraction (ROA) for a corresponding auxiliary equilibrium under optimal MPC. Simultaneously, the number of optimization iterations used to generate the control input is preselected to ensure that the resulting suboptimal input steers the state towards this auxiliary equilibrium. Theoretical guarantees are provided that ensure the auxiliary reference converges to the target reference in finite-time, the state converges to the target equilibrium, and the number of online iterations never exceeds a constant that can be computed offline.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"194 ","pages":"Article 105962"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iteration governor for suboptimal MPC with input constraints\",\"authors\":\"Jordan Leung,&nbsp;Ilya Kolmanovsky\",\"doi\":\"10.1016/j.sysconle.2024.105962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a supervisory scheme, called the iteration governor (IG), that augments a suboptimal input-constrained MPC policy by performing online selection of the reference command and the number of optimization iterations used to generate a control input. At each time step, an auxiliary reference command is selected so that the state is contained in a region of attraction (ROA) for a corresponding auxiliary equilibrium under optimal MPC. Simultaneously, the number of optimization iterations used to generate the control input is preselected to ensure that the resulting suboptimal input steers the state towards this auxiliary equilibrium. Theoretical guarantees are provided that ensure the auxiliary reference converges to the target reference in finite-time, the state converges to the target equilibrium, and the number of online iterations never exceeds a constant that can be computed offline.</div></div>\",\"PeriodicalId\":49450,\"journal\":{\"name\":\"Systems & Control Letters\",\"volume\":\"194 \",\"pages\":\"Article 105962\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems & Control Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167691124002500\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691124002500","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种称为迭代治理器(IG)的监督方案,它通过在线选择参考指令和用于生成控制输入的优化迭代次数来增强次优输入受限 MPC 策略。在每个时间步长内,选择辅助参考指令,使状态包含在最优 MPC 下相应辅助平衡的吸引区域 (ROA) 内。同时,预选用于生成控制输入的优化迭代次数,以确保所生成的次优输入能将状态导向该辅助平衡。理论保证可确保辅助参考在有限时间内收敛到目标参考,状态收敛到目标平衡,并且在线迭代次数永远不会超过可离线计算的常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iteration governor for suboptimal MPC with input constraints
This paper introduces a supervisory scheme, called the iteration governor (IG), that augments a suboptimal input-constrained MPC policy by performing online selection of the reference command and the number of optimization iterations used to generate a control input. At each time step, an auxiliary reference command is selected so that the state is contained in a region of attraction (ROA) for a corresponding auxiliary equilibrium under optimal MPC. Simultaneously, the number of optimization iterations used to generate the control input is preselected to ensure that the resulting suboptimal input steers the state towards this auxiliary equilibrium. Theoretical guarantees are provided that ensure the auxiliary reference converges to the target reference in finite-time, the state converges to the target equilibrium, and the number of online iterations never exceeds a constant that can be computed offline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems & Control Letters
Systems & Control Letters 工程技术-运筹学与管理科学
CiteScore
4.60
自引率
3.80%
发文量
144
审稿时长
6 months
期刊介绍: Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信