{"title":"不确定时变系统的平滑自适应有限时间跟踪","authors":"Guoqing Liu , Kaiwen Chen , Yang-Yang Chen","doi":"10.1016/j.sysconle.2024.105963","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the adaptive finite-time tracking control problem of strict-feedback nonlinear systems, where the control coefficient and the model parameters are time-varying and unknown. Based on the so-called <em>congelation of variables</em> method, a novel fractional-power adaptive update law is designed to achieve finite-time practical tracking in the presence of unknown time-varying coefficient/parameters. The virtual and actual control inputs of the proposed finite-time controller are designed in a smooth sign-function-like form complemented by a smooth sign-function-like filter, which allows for circumventing the singularity issues and the chattering phenomenon caused by non-smooth terms in classical finite-time controllers and filters. The tracking error proves to be bounded and converges to a desired compact set in finite time. Simulations of two practical examples are presented and show the effectiveness of the proposed algorithm.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"194 ","pages":"Article 105963"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smooth adaptive finite-time tracking for uncertain time-varying systems\",\"authors\":\"Guoqing Liu , Kaiwen Chen , Yang-Yang Chen\",\"doi\":\"10.1016/j.sysconle.2024.105963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper addresses the adaptive finite-time tracking control problem of strict-feedback nonlinear systems, where the control coefficient and the model parameters are time-varying and unknown. Based on the so-called <em>congelation of variables</em> method, a novel fractional-power adaptive update law is designed to achieve finite-time practical tracking in the presence of unknown time-varying coefficient/parameters. The virtual and actual control inputs of the proposed finite-time controller are designed in a smooth sign-function-like form complemented by a smooth sign-function-like filter, which allows for circumventing the singularity issues and the chattering phenomenon caused by non-smooth terms in classical finite-time controllers and filters. The tracking error proves to be bounded and converges to a desired compact set in finite time. Simulations of two practical examples are presented and show the effectiveness of the proposed algorithm.</div></div>\",\"PeriodicalId\":49450,\"journal\":{\"name\":\"Systems & Control Letters\",\"volume\":\"194 \",\"pages\":\"Article 105963\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems & Control Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167691124002512\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691124002512","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Smooth adaptive finite-time tracking for uncertain time-varying systems
This paper addresses the adaptive finite-time tracking control problem of strict-feedback nonlinear systems, where the control coefficient and the model parameters are time-varying and unknown. Based on the so-called congelation of variables method, a novel fractional-power adaptive update law is designed to achieve finite-time practical tracking in the presence of unknown time-varying coefficient/parameters. The virtual and actual control inputs of the proposed finite-time controller are designed in a smooth sign-function-like form complemented by a smooth sign-function-like filter, which allows for circumventing the singularity issues and the chattering phenomenon caused by non-smooth terms in classical finite-time controllers and filters. The tracking error proves to be bounded and converges to a desired compact set in finite time. Simulations of two practical examples are presented and show the effectiveness of the proposed algorithm.
期刊介绍:
Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.