{"title":"携带全长人类免疫球蛋白基因座的小鼠产生带有λ轻链的抗原特异性人类抗体","authors":"Kazuto Shimoya , Takashi Moriwaki , Kanako Kazuki , Akane Okada , Shigenori Baba , Yuana Masuda , Satoshi Abe , Yasuhiro Kazuki","doi":"10.1016/j.isci.2024.111258","DOIUrl":null,"url":null,"abstract":"<div><div>The development of antibody drugs through animal immunization typically requires the humanization of host antibodies to address concerns about immunogenicity in humans. However, employing an animal model capable of producing human antibodies presents the opportunity to develop antibody drugs without the need for humanization. Despite the ratio of human immunoglobulin (Ig) κ to Igλ usage being approximately 60%:40%, the majority of approved antibody therapeutics are kappa antibodies, and the development of lambda antibodies as therapeutic agents has lagged behind. Therefore, in this study, we developed mice carrying the <em>IGH</em> and <em>IGL</em> loci (IGHL), which can produce human lambda antibodies, using mouse artificial chromosome (MAC) vectors. We demonstrated that IGHL mice consistently retain the human lambda antibody locus integrated on the MAC across generations and can be induced to produce specific antibodies upon antigen stimulation. These findings provide a promising platform for advancing lambda antibody drugs, which have historically been neglected.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 12","pages":"Article 111258"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mice carrying the full-length human immunoglobulin loci produce antigen-specific human antibodies with the lambda light chain\",\"authors\":\"Kazuto Shimoya , Takashi Moriwaki , Kanako Kazuki , Akane Okada , Shigenori Baba , Yuana Masuda , Satoshi Abe , Yasuhiro Kazuki\",\"doi\":\"10.1016/j.isci.2024.111258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of antibody drugs through animal immunization typically requires the humanization of host antibodies to address concerns about immunogenicity in humans. However, employing an animal model capable of producing human antibodies presents the opportunity to develop antibody drugs without the need for humanization. Despite the ratio of human immunoglobulin (Ig) κ to Igλ usage being approximately 60%:40%, the majority of approved antibody therapeutics are kappa antibodies, and the development of lambda antibodies as therapeutic agents has lagged behind. Therefore, in this study, we developed mice carrying the <em>IGH</em> and <em>IGL</em> loci (IGHL), which can produce human lambda antibodies, using mouse artificial chromosome (MAC) vectors. We demonstrated that IGHL mice consistently retain the human lambda antibody locus integrated on the MAC across generations and can be induced to produce specific antibodies upon antigen stimulation. These findings provide a promising platform for advancing lambda antibody drugs, which have historically been neglected.</div></div>\",\"PeriodicalId\":342,\"journal\":{\"name\":\"iScience\",\"volume\":\"27 12\",\"pages\":\"Article 111258\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iScience\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589004224024830\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004224024830","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Mice carrying the full-length human immunoglobulin loci produce antigen-specific human antibodies with the lambda light chain
The development of antibody drugs through animal immunization typically requires the humanization of host antibodies to address concerns about immunogenicity in humans. However, employing an animal model capable of producing human antibodies presents the opportunity to develop antibody drugs without the need for humanization. Despite the ratio of human immunoglobulin (Ig) κ to Igλ usage being approximately 60%:40%, the majority of approved antibody therapeutics are kappa antibodies, and the development of lambda antibodies as therapeutic agents has lagged behind. Therefore, in this study, we developed mice carrying the IGH and IGL loci (IGHL), which can produce human lambda antibodies, using mouse artificial chromosome (MAC) vectors. We demonstrated that IGHL mice consistently retain the human lambda antibody locus integrated on the MAC across generations and can be induced to produce specific antibodies upon antigen stimulation. These findings provide a promising platform for advancing lambda antibody drugs, which have historically been neglected.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.