产品的相对功能可数子集

IF 0.6 4区 数学 Q3 MATHEMATICS
Anton E. Lipin
{"title":"产品的相对功能可数子集","authors":"Anton E. Lipin","doi":"10.1016/j.topol.2024.109133","DOIUrl":null,"url":null,"abstract":"<div><div>A subset <em>A</em> of a topological space <em>X</em> is called <em>relatively functionally countable</em> (<em>RFC</em>) in <em>X</em>, if for each continuous function <span><math><mi>f</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>R</mi></math></span> the set <span><math><mi>f</mi><mo>[</mo><mi>A</mi><mo>]</mo></math></span> is countable. We prove that all RFC subsets of a product <span><math><munder><mo>∏</mo><mrow><mi>n</mi><mo>∈</mo><mi>ω</mi></mrow></munder><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are countable, assuming that spaces <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are Tychonoff and all RFC subsets of every <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are countable. In particular, in a metrizable space every RFC subset is countable.</div><div>The main tool in the proof is the following result: for every Tychonoff space <em>X</em> and any countable set <span><math><mi>Q</mi><mo>⊆</mo><mi>X</mi></math></span> there is a continuous function <span><math><mi>f</mi><mo>:</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>ω</mi></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> such that the restriction of <em>f</em> to <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span> is injective.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"359 ","pages":"Article 109133"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relatively functionally countable subsets of products\",\"authors\":\"Anton E. Lipin\",\"doi\":\"10.1016/j.topol.2024.109133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A subset <em>A</em> of a topological space <em>X</em> is called <em>relatively functionally countable</em> (<em>RFC</em>) in <em>X</em>, if for each continuous function <span><math><mi>f</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>R</mi></math></span> the set <span><math><mi>f</mi><mo>[</mo><mi>A</mi><mo>]</mo></math></span> is countable. We prove that all RFC subsets of a product <span><math><munder><mo>∏</mo><mrow><mi>n</mi><mo>∈</mo><mi>ω</mi></mrow></munder><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are countable, assuming that spaces <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are Tychonoff and all RFC subsets of every <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are countable. In particular, in a metrizable space every RFC subset is countable.</div><div>The main tool in the proof is the following result: for every Tychonoff space <em>X</em> and any countable set <span><math><mi>Q</mi><mo>⊆</mo><mi>X</mi></math></span> there is a continuous function <span><math><mi>f</mi><mo>:</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>ω</mi></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> such that the restriction of <em>f</em> to <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mi>ω</mi></mrow></msup></math></span> is injective.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"359 \",\"pages\":\"Article 109133\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864124003183\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124003183","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果对于每个连续函数 f:X→R 的集合 f[A] 是可数的,那么拓扑空间 X 的子集 A 称为 X 中的相对函数可数(RFC)。我们假定空间 Xn 是 Tychonoff 的,且每个 Xn 的所有 RFC 子集都是可数的,从而证明乘积 ∏n∈ωXn 的所有 RFC 子集都是可数的。证明的主要工具是下面的结果:对于每一个Tychonoff空间X和任何可数集Q⊆X,有一个连续函数f:Xω→R2,使得f对Qω的限制是注入的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relatively functionally countable subsets of products
A subset A of a topological space X is called relatively functionally countable (RFC) in X, if for each continuous function f:XR the set f[A] is countable. We prove that all RFC subsets of a product nωXn are countable, assuming that spaces Xn are Tychonoff and all RFC subsets of every Xn are countable. In particular, in a metrizable space every RFC subset is countable.
The main tool in the proof is the following result: for every Tychonoff space X and any countable set QX there is a continuous function f:XωR2 such that the restriction of f to Qω is injective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信