{"title":"分子印迹磁性-MoS2 纳米片的简易合成,用于选择性和灵敏地检测四甲基砷","authors":"Mustafa Bilici, Adem Zengin","doi":"10.1016/j.chemphys.2024.112526","DOIUrl":null,"url":null,"abstract":"<div><div>In the present study, a novel analytical method was developed for selective and sensitive detection of ametryn in tap and lake water samples based on molecular imprinting technology with high performance liquid chromatography-ultraviolet detection. For this purpose, molecularly-imprinted magnetic MoS<sub>2</sub> (MIP@mag-MoS<sub>2</sub>) particles were synthesized via surface initiated reversible addition-fragmentation chain transfer polymerization. The investigation of the rebinding properties, selective recognition ability, and reusability of the MIP@mag-MoS<sub>2</sub> demonstrated their high adsorption capacity, outstanding selectivity, rapid adsorption kinetics, and capability for multiple uses, with an imprinting factor of 4.39. The detection limits for ametryn were 0.031 µ g/L and 0.041 µ g/L in tap water and lake water, respectively. The proposed method also had high recovery percentage and low relative standard deviations for the water samples spiked with ametryn. The results suggest that the combination of mag-MoS<sub>2</sub> with MIP layer is a prospective alternative analytical method for quantification of ametryn.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"589 ","pages":"Article 112526"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile synthesis of molecularly-imprinted magnetic-MoS2 nanosheets for selective and sensitive detection of ametryn\",\"authors\":\"Mustafa Bilici, Adem Zengin\",\"doi\":\"10.1016/j.chemphys.2024.112526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the present study, a novel analytical method was developed for selective and sensitive detection of ametryn in tap and lake water samples based on molecular imprinting technology with high performance liquid chromatography-ultraviolet detection. For this purpose, molecularly-imprinted magnetic MoS<sub>2</sub> (MIP@mag-MoS<sub>2</sub>) particles were synthesized via surface initiated reversible addition-fragmentation chain transfer polymerization. The investigation of the rebinding properties, selective recognition ability, and reusability of the MIP@mag-MoS<sub>2</sub> demonstrated their high adsorption capacity, outstanding selectivity, rapid adsorption kinetics, and capability for multiple uses, with an imprinting factor of 4.39. The detection limits for ametryn were 0.031 µ g/L and 0.041 µ g/L in tap water and lake water, respectively. The proposed method also had high recovery percentage and low relative standard deviations for the water samples spiked with ametryn. The results suggest that the combination of mag-MoS<sub>2</sub> with MIP layer is a prospective alternative analytical method for quantification of ametryn.</div></div>\",\"PeriodicalId\":272,\"journal\":{\"name\":\"Chemical Physics\",\"volume\":\"589 \",\"pages\":\"Article 112526\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301010424003550\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010424003550","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Facile synthesis of molecularly-imprinted magnetic-MoS2 nanosheets for selective and sensitive detection of ametryn
In the present study, a novel analytical method was developed for selective and sensitive detection of ametryn in tap and lake water samples based on molecular imprinting technology with high performance liquid chromatography-ultraviolet detection. For this purpose, molecularly-imprinted magnetic MoS2 (MIP@mag-MoS2) particles were synthesized via surface initiated reversible addition-fragmentation chain transfer polymerization. The investigation of the rebinding properties, selective recognition ability, and reusability of the MIP@mag-MoS2 demonstrated their high adsorption capacity, outstanding selectivity, rapid adsorption kinetics, and capability for multiple uses, with an imprinting factor of 4.39. The detection limits for ametryn were 0.031 µ g/L and 0.041 µ g/L in tap water and lake water, respectively. The proposed method also had high recovery percentage and low relative standard deviations for the water samples spiked with ametryn. The results suggest that the combination of mag-MoS2 with MIP layer is a prospective alternative analytical method for quantification of ametryn.
期刊介绍:
Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.