具有更好止血性能的抗菌壳聚糖/有机雷克托石纳米复合-共轭明胶/β-环糊精水凝胶用于伤口修复

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Rong Huang , Yongqian Bian , Wenxuan Wang , Lirong Xu, Hao Zhang, Haowei Zhou, Jincheng Du, Jiaqi Li, Yuheng Zhang, Xueyong Li, Jing Li
{"title":"具有更好止血性能的抗菌壳聚糖/有机雷克托石纳米复合-共轭明胶/β-环糊精水凝胶用于伤口修复","authors":"Rong Huang ,&nbsp;Yongqian Bian ,&nbsp;Wenxuan Wang ,&nbsp;Lirong Xu,&nbsp;Hao Zhang,&nbsp;Haowei Zhou,&nbsp;Jincheng Du,&nbsp;Jiaqi Li,&nbsp;Yuheng Zhang,&nbsp;Xueyong Li,&nbsp;Jing Li","doi":"10.1016/j.carbpol.2024.122961","DOIUrl":null,"url":null,"abstract":"<div><div>Bacterial infections and severe bleeding continue to pose significant challenges in wound repair. There is an urgent need for innovative, nature-inspired hydrogel dressings with antibacterial and hemostatic properties. A Ge-β-CD-CS-OREC conjugate hydrogel was developed by grafting β-CD and CS-OREC nanocomposites into a Ge matrix using EDC/NHS crosslinking, as confirmed by FT-IR and EDX analyses. Compared to single Ge-β-CD cross-linked hydrogels, the addition of CS-OREC enhanced the hydrogel's properties, including increased pore size (60 ± 14 μm), improved wettability (WCA = 28.82 ± 0.6°), enhanced tensile strength (41.3 ± 3.56 KPa), and strong tissue adhesion. Furthermore, this hydrogel demonstrated excellent cytocompatibility when co-cultured with keratinocytes (Kcs) and vascular endothelial cells (VECs). The incorporation of CS chains into OREC interlayers allowed the hydrogel to specifically target bacteria and increase membrane permeability in <em>Pseudomonas aeruginosa</em> (PA), <em>Klebsiella pneumoniae</em> (KP), and <em>Staphylococcus aureus</em> (SA), effectively reducing the bacterial load in infected wounds by 50.24–73.92 % compared to controls in vivo<em>.</em> Further, the hydrogel exhibited superior hemostatic efficiency (78 ± 10 s) over commercial gauze and other gels by enhancing platelet activation and coagulation factor secretion. The hydrogel accelerated tissue regeneration by promoting epithelial maturation and blood vessel regeneration, indicating its clinical potential as promising wound dressing.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibacterial chitosan/organic rectorite nanocomposite-conjugated gelatin/β-cyclodextrin hydrogels with improved hemostasis performance for wound repair\",\"authors\":\"Rong Huang ,&nbsp;Yongqian Bian ,&nbsp;Wenxuan Wang ,&nbsp;Lirong Xu,&nbsp;Hao Zhang,&nbsp;Haowei Zhou,&nbsp;Jincheng Du,&nbsp;Jiaqi Li,&nbsp;Yuheng Zhang,&nbsp;Xueyong Li,&nbsp;Jing Li\",\"doi\":\"10.1016/j.carbpol.2024.122961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bacterial infections and severe bleeding continue to pose significant challenges in wound repair. There is an urgent need for innovative, nature-inspired hydrogel dressings with antibacterial and hemostatic properties. A Ge-β-CD-CS-OREC conjugate hydrogel was developed by grafting β-CD and CS-OREC nanocomposites into a Ge matrix using EDC/NHS crosslinking, as confirmed by FT-IR and EDX analyses. Compared to single Ge-β-CD cross-linked hydrogels, the addition of CS-OREC enhanced the hydrogel's properties, including increased pore size (60 ± 14 μm), improved wettability (WCA = 28.82 ± 0.6°), enhanced tensile strength (41.3 ± 3.56 KPa), and strong tissue adhesion. Furthermore, this hydrogel demonstrated excellent cytocompatibility when co-cultured with keratinocytes (Kcs) and vascular endothelial cells (VECs). The incorporation of CS chains into OREC interlayers allowed the hydrogel to specifically target bacteria and increase membrane permeability in <em>Pseudomonas aeruginosa</em> (PA), <em>Klebsiella pneumoniae</em> (KP), and <em>Staphylococcus aureus</em> (SA), effectively reducing the bacterial load in infected wounds by 50.24–73.92 % compared to controls in vivo<em>.</em> Further, the hydrogel exhibited superior hemostatic efficiency (78 ± 10 s) over commercial gauze and other gels by enhancing platelet activation and coagulation factor secretion. The hydrogel accelerated tissue regeneration by promoting epithelial maturation and blood vessel regeneration, indicating its clinical potential as promising wound dressing.</div></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861724011871\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724011871","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antibacterial chitosan/organic rectorite nanocomposite-conjugated gelatin/β-cyclodextrin hydrogels with improved hemostasis performance for wound repair
Bacterial infections and severe bleeding continue to pose significant challenges in wound repair. There is an urgent need for innovative, nature-inspired hydrogel dressings with antibacterial and hemostatic properties. A Ge-β-CD-CS-OREC conjugate hydrogel was developed by grafting β-CD and CS-OREC nanocomposites into a Ge matrix using EDC/NHS crosslinking, as confirmed by FT-IR and EDX analyses. Compared to single Ge-β-CD cross-linked hydrogels, the addition of CS-OREC enhanced the hydrogel's properties, including increased pore size (60 ± 14 μm), improved wettability (WCA = 28.82 ± 0.6°), enhanced tensile strength (41.3 ± 3.56 KPa), and strong tissue adhesion. Furthermore, this hydrogel demonstrated excellent cytocompatibility when co-cultured with keratinocytes (Kcs) and vascular endothelial cells (VECs). The incorporation of CS chains into OREC interlayers allowed the hydrogel to specifically target bacteria and increase membrane permeability in Pseudomonas aeruginosa (PA), Klebsiella pneumoniae (KP), and Staphylococcus aureus (SA), effectively reducing the bacterial load in infected wounds by 50.24–73.92 % compared to controls in vivo. Further, the hydrogel exhibited superior hemostatic efficiency (78 ± 10 s) over commercial gauze and other gels by enhancing platelet activation and coagulation factor secretion. The hydrogel accelerated tissue regeneration by promoting epithelial maturation and blood vessel regeneration, indicating its clinical potential as promising wound dressing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信