利用多通道数据输入促进区域山体滑坡检测的变压器嵌入式一维 VGG 卷积神经网络

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Bangjie Fu , Yange Li , Chen Wang , Zheng Han , Nan Jiang , Wendu Xie , Changli Li , Haohui Ding , Weidong Wang , Guangqi Chen
{"title":"利用多通道数据输入促进区域山体滑坡检测的变压器嵌入式一维 VGG 卷积神经网络","authors":"Bangjie Fu ,&nbsp;Yange Li ,&nbsp;Chen Wang ,&nbsp;Zheng Han ,&nbsp;Nan Jiang ,&nbsp;Wendu Xie ,&nbsp;Changli Li ,&nbsp;Haohui Ding ,&nbsp;Weidong Wang ,&nbsp;Guangqi Chen","doi":"10.1016/j.envsoft.2024.106261","DOIUrl":null,"url":null,"abstract":"<div><div>Up-to-date studies have proved the effectiveness of Convolutional Neural Networks (CNN) in landslide detection. With the rapid development of Remote Sensing and Geographic Information System technologies, an increasing amount of spectral and non-spectral information is available for CNN modeling. It offering a comprehensive perspective for landslide detection, but also presents challenges to CNNs, especially in efficiently learning long-range feature associations. Therefore, we proposed a novel Transformer-improved VGG network (Trans-VGG). It takes spectral (RGB images) and non-spectral information (elevation, slope, and PCA components) as data inputs and integrating both local and global feature in modeling. The method is tested in two landslide cluster areas in Litang County, China. The results in site a show that the Trans-VGG model demonstrates an improvement in F1-score, ranging from 4% to 21%, compared with the conventional machine learning and CNN models. The validation result in site b further proved the validity of our proposed method.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"183 ","pages":"Article 106261"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformer-embedded 1D VGG convolutional neural network for regional landslides detection boosted by multichannel data inputs\",\"authors\":\"Bangjie Fu ,&nbsp;Yange Li ,&nbsp;Chen Wang ,&nbsp;Zheng Han ,&nbsp;Nan Jiang ,&nbsp;Wendu Xie ,&nbsp;Changli Li ,&nbsp;Haohui Ding ,&nbsp;Weidong Wang ,&nbsp;Guangqi Chen\",\"doi\":\"10.1016/j.envsoft.2024.106261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Up-to-date studies have proved the effectiveness of Convolutional Neural Networks (CNN) in landslide detection. With the rapid development of Remote Sensing and Geographic Information System technologies, an increasing amount of spectral and non-spectral information is available for CNN modeling. It offering a comprehensive perspective for landslide detection, but also presents challenges to CNNs, especially in efficiently learning long-range feature associations. Therefore, we proposed a novel Transformer-improved VGG network (Trans-VGG). It takes spectral (RGB images) and non-spectral information (elevation, slope, and PCA components) as data inputs and integrating both local and global feature in modeling. The method is tested in two landslide cluster areas in Litang County, China. The results in site a show that the Trans-VGG model demonstrates an improvement in F1-score, ranging from 4% to 21%, compared with the conventional machine learning and CNN models. The validation result in site b further proved the validity of our proposed method.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"183 \",\"pages\":\"Article 106261\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224003220\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224003220","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

最新研究证明了卷积神经网络(CNN)在滑坡检测中的有效性。随着遥感和地理信息系统技术的快速发展,越来越多的光谱和非光谱信息可用于 CNN 建模。这为滑坡检测提供了一个全面的视角,但也给 CNN 带来了挑战,尤其是在高效学习长距离特征关联方面。因此,我们提出了一种新颖的变换器改进型 VGG 网络(Trans-VGG)。它将光谱信息(RGB 图像)和非光谱信息(海拔、坡度和 PCA 分量)作为数据输入,并在建模中整合了局部和全局特征。该方法在中国理塘县的两个滑坡群区进行了测试。与传统的机器学习模型和 CNN 模型相比,A 区的结果显示 Trans-VGG 模型的 F1 分数提高了 4% 至 21%。b 站点的验证结果进一步证明了我们所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformer-embedded 1D VGG convolutional neural network for regional landslides detection boosted by multichannel data inputs
Up-to-date studies have proved the effectiveness of Convolutional Neural Networks (CNN) in landslide detection. With the rapid development of Remote Sensing and Geographic Information System technologies, an increasing amount of spectral and non-spectral information is available for CNN modeling. It offering a comprehensive perspective for landslide detection, but also presents challenges to CNNs, especially in efficiently learning long-range feature associations. Therefore, we proposed a novel Transformer-improved VGG network (Trans-VGG). It takes spectral (RGB images) and non-spectral information (elevation, slope, and PCA components) as data inputs and integrating both local and global feature in modeling. The method is tested in two landslide cluster areas in Litang County, China. The results in site a show that the Trans-VGG model demonstrates an improvement in F1-score, ranging from 4% to 21%, compared with the conventional machine learning and CNN models. The validation result in site b further proved the validity of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信