脆弱性分析的目的、方法和建议分类学

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Nathan Bonham , Joseph Kasprzyk , Edith Zagona
{"title":"脆弱性分析的目的、方法和建议分类学","authors":"Nathan Bonham ,&nbsp;Joseph Kasprzyk ,&nbsp;Edith Zagona","doi":"10.1016/j.envsoft.2024.106269","DOIUrl":null,"url":null,"abstract":"<div><div>Vulnerability analysis is an emerging technique that discovers concise descriptions of the conditions that lead to decision-relevant outcomes (i.e., scenarios) by applying machine learning methods to a large ensemble of simulation model runs. This review organizes vulnerability analysis methods into a taxonomy and compares them in terms of interpretability, flexibility, and accuracy. Our review contextualizes interpretability in terms of five purposes for vulnerability analysis, such as adaptation systems and choosing between policies. We make recommendations for designing a vulnerability analysis that is interpretable for a specific purpose. Furthermore, a numerical experiment demonstrates how methods can be compared based on interpretability and accuracy. Several research opportunities are identified, including new developments in machine learning that could reduce computing requirements and improve interpretability. Throughout the review, a consistent example of reservoir operation policies in the Colorado River Basin illustrates the methods.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"183 ","pages":"Article 106269"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taxonomy of purposes, methods, and recommendations for vulnerability analysis\",\"authors\":\"Nathan Bonham ,&nbsp;Joseph Kasprzyk ,&nbsp;Edith Zagona\",\"doi\":\"10.1016/j.envsoft.2024.106269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vulnerability analysis is an emerging technique that discovers concise descriptions of the conditions that lead to decision-relevant outcomes (i.e., scenarios) by applying machine learning methods to a large ensemble of simulation model runs. This review organizes vulnerability analysis methods into a taxonomy and compares them in terms of interpretability, flexibility, and accuracy. Our review contextualizes interpretability in terms of five purposes for vulnerability analysis, such as adaptation systems and choosing between policies. We make recommendations for designing a vulnerability analysis that is interpretable for a specific purpose. Furthermore, a numerical experiment demonstrates how methods can be compared based on interpretability and accuracy. Several research opportunities are identified, including new developments in machine learning that could reduce computing requirements and improve interpretability. Throughout the review, a consistent example of reservoir operation policies in the Colorado River Basin illustrates the methods.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"183 \",\"pages\":\"Article 106269\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136481522400330X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136481522400330X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

脆弱性分析是一种新兴技术,它通过将机器学习方法应用于大量的仿真模型运行集合,发现导致决策相关结果(即情景)的条件的简明描述。本综述将脆弱性分析方法归纳为一个分类法,并从可解释性、灵活性和准确性方面对其进行比较。我们的综述从脆弱性分析的五个目的(如适应系统和政策选择)的角度对可解释性进行了阐述。我们就如何设计可针对特定目的进行解释的脆弱性分析提出了建议。此外,一个数字实验展示了如何根据可解释性和准确性对各种方法进行比较。我们还指出了一些研究机会,包括机器学习的新发展,它们可以降低计算要求并提高可解释性。在整篇综述中,科罗拉多河流域水库运行政策的实例始终贯穿了这些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Taxonomy of purposes, methods, and recommendations for vulnerability analysis
Vulnerability analysis is an emerging technique that discovers concise descriptions of the conditions that lead to decision-relevant outcomes (i.e., scenarios) by applying machine learning methods to a large ensemble of simulation model runs. This review organizes vulnerability analysis methods into a taxonomy and compares them in terms of interpretability, flexibility, and accuracy. Our review contextualizes interpretability in terms of five purposes for vulnerability analysis, such as adaptation systems and choosing between policies. We make recommendations for designing a vulnerability analysis that is interpretable for a specific purpose. Furthermore, a numerical experiment demonstrates how methods can be compared based on interpretability and accuracy. Several research opportunities are identified, including new developments in machine learning that could reduce computing requirements and improve interpretability. Throughout the review, a consistent example of reservoir operation policies in the Colorado River Basin illustrates the methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信