人工智能辐射冷却技术

IF 4.6 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yeongju Jung , Seung Hwan Ko
{"title":"人工智能辐射冷却技术","authors":"Yeongju Jung ,&nbsp;Seung Hwan Ko","doi":"10.1016/j.isci.2024.111325","DOIUrl":null,"url":null,"abstract":"<div><div>As sustainable thermal management becomes a global priority, the development of radiative cooling (RC) technology has recently emerged as a promising solution. Simultaneously, recent advent of artificial intelligence (AI) offers the potential to revolutionize current research in sustainable cooling strategies. This article discusses the advancement of radiative cooling technology through the integration of AI, tackling the challenging issues arising from the conventional approach and offering strategic solutions to address global issues. AI, capable of mimicking or exceeding human capabilities through various algorithms, enables the efficient optimization of RC structures. Moreover, integrating AI with advanced RC technologies, which have the potential to surpass traditional RC configurations and applications but are still in the early stages, can further accelerate progress in the field of RC. Hence, AI-driven RC technologies will contribute to addressing the increasingly prevalent environmental challenges, further being a leading solution for next-generation sustainable thermal managements as these technologies continue to mature.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 12","pages":"Article 111325"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiative cooling technology with artificial intelligence\",\"authors\":\"Yeongju Jung ,&nbsp;Seung Hwan Ko\",\"doi\":\"10.1016/j.isci.2024.111325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As sustainable thermal management becomes a global priority, the development of radiative cooling (RC) technology has recently emerged as a promising solution. Simultaneously, recent advent of artificial intelligence (AI) offers the potential to revolutionize current research in sustainable cooling strategies. This article discusses the advancement of radiative cooling technology through the integration of AI, tackling the challenging issues arising from the conventional approach and offering strategic solutions to address global issues. AI, capable of mimicking or exceeding human capabilities through various algorithms, enables the efficient optimization of RC structures. Moreover, integrating AI with advanced RC technologies, which have the potential to surpass traditional RC configurations and applications but are still in the early stages, can further accelerate progress in the field of RC. Hence, AI-driven RC technologies will contribute to addressing the increasingly prevalent environmental challenges, further being a leading solution for next-generation sustainable thermal managements as these technologies continue to mature.</div></div>\",\"PeriodicalId\":342,\"journal\":{\"name\":\"iScience\",\"volume\":\"27 12\",\"pages\":\"Article 111325\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iScience\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589004224025501\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004224025501","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

随着可持续热管理成为全球优先考虑的问题,辐射冷却(RC)技术的发展近来成为一种前景广阔的解决方案。与此同时,最近出现的人工智能(AI)为当前的可持续冷却战略研究提供了革命性的潜力。本文讨论了通过整合人工智能推进辐射冷却技术,解决传统方法中出现的挑战性问题,并为解决全球性问题提供战略性解决方案。人工智能能够通过各种算法模仿或超越人类的能力,从而有效优化 RC 结构。此外,将人工智能与先进的 RC 技术相结合,可以进一步加快 RC 领域的发展,这些技术有可能超越传统的 RC 结构和应用,但目前仍处于早期阶段。因此,人工智能驱动的 RC 技术将有助于应对日益普遍的环境挑战,并随着这些技术的不断成熟,进一步成为下一代可持续热管理的领先解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Radiative cooling technology with artificial intelligence

Radiative cooling technology with artificial intelligence
As sustainable thermal management becomes a global priority, the development of radiative cooling (RC) technology has recently emerged as a promising solution. Simultaneously, recent advent of artificial intelligence (AI) offers the potential to revolutionize current research in sustainable cooling strategies. This article discusses the advancement of radiative cooling technology through the integration of AI, tackling the challenging issues arising from the conventional approach and offering strategic solutions to address global issues. AI, capable of mimicking or exceeding human capabilities through various algorithms, enables the efficient optimization of RC structures. Moreover, integrating AI with advanced RC technologies, which have the potential to surpass traditional RC configurations and applications but are still in the early stages, can further accelerate progress in the field of RC. Hence, AI-driven RC technologies will contribute to addressing the increasingly prevalent environmental challenges, further being a leading solution for next-generation sustainable thermal managements as these technologies continue to mature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
iScience
iScience Multidisciplinary-Multidisciplinary
CiteScore
7.20
自引率
1.70%
发文量
1972
审稿时长
6 weeks
期刊介绍: Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results. We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信