Harika Chittella , Li Wan Yoon , Suganti Ramarad , Zee-Wei Lai
{"title":"产气克雷伯氏菌对深共晶溶剂预处理天然橡胶手套的生物降解:橡胶废物管理的可持续方法","authors":"Harika Chittella , Li Wan Yoon , Suganti Ramarad , Zee-Wei Lai","doi":"10.1016/j.bej.2024.109569","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the potential of deep eutectic solvents (DES) to enhance the biodegradation of natural rubber gloves (NRG) by <em>Klebsiella aerogenes</em>. Choline chloride and urea (ChCl: urea) was the DES employed to pre-treat NRG at various temperatures (80°C to 140°C) and durations (0.5 h to 5 h). Pre-treated rubber (p-NRG) underwent significant physical and chemical changes, enhancing its biodegradability. Analytical techniques such as dry weight analysis, bacteria cell concentration, FTIR TGA, and SEM were used to characterize the pre-treated and biodegraded samples. The results have demonstrated a significant weight loss and structural modifications in p-NRG, with the highest degradation of 43 % observed at 140°C for 5 hours of pretreatment before biodegradation. Meanwhile, merely 17 % of weight loss was observed when pre-treatment was not employed. DES pre-treatment notably enhanced NRG biodegradability, achieving a 50.6 % weight loss when biodegradation was conducted at pH 7 and 35°C. The highest cell concentration, 0.75 g/L, was recorded in the second week of the biodegradation process. Results have indicated that the maximum protein concentration of 697.3 µg/ml, along with the highest enzyme activities for laccase and manganese peroxidase (MnP) at 0.46 ± 0.05 IU and 0.30 ± 0.05 IU respectively, were recorded in the second week of the biodegradation process. DES pre-treatment has significantly improved the biodegradability of NRG by <em>Klebsiella aerogenes</em>, offering a promising and eco-friendly solution for rubber waste management.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"213 ","pages":"Article 109569"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biodegradation of deep eutectic solvent pre-treated natural rubber gloves by Klebsiella aerogenes: A sustainable approach to rubber waste management\",\"authors\":\"Harika Chittella , Li Wan Yoon , Suganti Ramarad , Zee-Wei Lai\",\"doi\":\"10.1016/j.bej.2024.109569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the potential of deep eutectic solvents (DES) to enhance the biodegradation of natural rubber gloves (NRG) by <em>Klebsiella aerogenes</em>. Choline chloride and urea (ChCl: urea) was the DES employed to pre-treat NRG at various temperatures (80°C to 140°C) and durations (0.5 h to 5 h). Pre-treated rubber (p-NRG) underwent significant physical and chemical changes, enhancing its biodegradability. Analytical techniques such as dry weight analysis, bacteria cell concentration, FTIR TGA, and SEM were used to characterize the pre-treated and biodegraded samples. The results have demonstrated a significant weight loss and structural modifications in p-NRG, with the highest degradation of 43 % observed at 140°C for 5 hours of pretreatment before biodegradation. Meanwhile, merely 17 % of weight loss was observed when pre-treatment was not employed. DES pre-treatment notably enhanced NRG biodegradability, achieving a 50.6 % weight loss when biodegradation was conducted at pH 7 and 35°C. The highest cell concentration, 0.75 g/L, was recorded in the second week of the biodegradation process. Results have indicated that the maximum protein concentration of 697.3 µg/ml, along with the highest enzyme activities for laccase and manganese peroxidase (MnP) at 0.46 ± 0.05 IU and 0.30 ± 0.05 IU respectively, were recorded in the second week of the biodegradation process. DES pre-treatment has significantly improved the biodegradability of NRG by <em>Klebsiella aerogenes</em>, offering a promising and eco-friendly solution for rubber waste management.</div></div>\",\"PeriodicalId\":8766,\"journal\":{\"name\":\"Biochemical Engineering Journal\",\"volume\":\"213 \",\"pages\":\"Article 109569\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369703X24003565\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24003565","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Biodegradation of deep eutectic solvent pre-treated natural rubber gloves by Klebsiella aerogenes: A sustainable approach to rubber waste management
This study investigates the potential of deep eutectic solvents (DES) to enhance the biodegradation of natural rubber gloves (NRG) by Klebsiella aerogenes. Choline chloride and urea (ChCl: urea) was the DES employed to pre-treat NRG at various temperatures (80°C to 140°C) and durations (0.5 h to 5 h). Pre-treated rubber (p-NRG) underwent significant physical and chemical changes, enhancing its biodegradability. Analytical techniques such as dry weight analysis, bacteria cell concentration, FTIR TGA, and SEM were used to characterize the pre-treated and biodegraded samples. The results have demonstrated a significant weight loss and structural modifications in p-NRG, with the highest degradation of 43 % observed at 140°C for 5 hours of pretreatment before biodegradation. Meanwhile, merely 17 % of weight loss was observed when pre-treatment was not employed. DES pre-treatment notably enhanced NRG biodegradability, achieving a 50.6 % weight loss when biodegradation was conducted at pH 7 and 35°C. The highest cell concentration, 0.75 g/L, was recorded in the second week of the biodegradation process. Results have indicated that the maximum protein concentration of 697.3 µg/ml, along with the highest enzyme activities for laccase and manganese peroxidase (MnP) at 0.46 ± 0.05 IU and 0.30 ± 0.05 IU respectively, were recorded in the second week of the biodegradation process. DES pre-treatment has significantly improved the biodegradability of NRG by Klebsiella aerogenes, offering a promising and eco-friendly solution for rubber waste management.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.