Lingke Feng , Rong Pan , Ke Ning , Wen Sun , Yirong Chen , Yuanyuan Xie , Mingzhu Wang , Yan Li , Ling Yu
{"title":"三维肿瘤球体成熟度对细胞迁移和侵袭动力学的影响","authors":"Lingke Feng , Rong Pan , Ke Ning , Wen Sun , Yirong Chen , Yuanyuan Xie , Mingzhu Wang , Yan Li , Ling Yu","doi":"10.1016/j.bej.2024.109567","DOIUrl":null,"url":null,"abstract":"<div><div>Cell motility is crucial in cancer metastasis, and understanding its regulation in tumor cells is vital for developing anti-metastatic therapies. Traditional 2D cell culture assays provide insights into cell migration but fail to replicate the complex 3D architecture of tissues <em>in vivo</em>. 3D cell culture models like tumor spheroids have been applied for cell migration tests. This study investigates the role of spheroid maturity in tumor cell motility, hypothesizing that spheroid maturity mirrors physiological conditions in solid tumors. Human prostate (DU 145), breast (MCF-7), and murine breast (EMT-6) cancer cells were cultured into spheroids of varying time (3, 7, and 11 days). The migration and invasion of these spheroids were analyzed, revealing that 11-day-old DU 145 spheroids demonstrated the greatest horizontal migration, correlating with RNA-seq data showing increased cell adhesion, cytoskeleton dynamics, and motility pathways. Confocal microscopy and single-cell multimode analyzer indicated higher reactive oxygen species (ROS) levels in mature spheroids, potentially activating motility pathways. Additionally, DU 145 spheroids were treated with chemotherapy reagent Doxorubicin (DOX), and the results showed that spheroids culture for 7 and 11 days exhibited greater resistance to DOX compared to spheroids cultured for 3 days. These findings highlighted the importance of considering spheroid maturity in cancer research and drug development, emphasizing the need for systematic analysis of spheroid growth conditions to ensure reproducible and reliable experimental settings.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"213 ","pages":"Article 109567"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of 3D tumor spheroid maturity on cell migration and invasion dynamics\",\"authors\":\"Lingke Feng , Rong Pan , Ke Ning , Wen Sun , Yirong Chen , Yuanyuan Xie , Mingzhu Wang , Yan Li , Ling Yu\",\"doi\":\"10.1016/j.bej.2024.109567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cell motility is crucial in cancer metastasis, and understanding its regulation in tumor cells is vital for developing anti-metastatic therapies. Traditional 2D cell culture assays provide insights into cell migration but fail to replicate the complex 3D architecture of tissues <em>in vivo</em>. 3D cell culture models like tumor spheroids have been applied for cell migration tests. This study investigates the role of spheroid maturity in tumor cell motility, hypothesizing that spheroid maturity mirrors physiological conditions in solid tumors. Human prostate (DU 145), breast (MCF-7), and murine breast (EMT-6) cancer cells were cultured into spheroids of varying time (3, 7, and 11 days). The migration and invasion of these spheroids were analyzed, revealing that 11-day-old DU 145 spheroids demonstrated the greatest horizontal migration, correlating with RNA-seq data showing increased cell adhesion, cytoskeleton dynamics, and motility pathways. Confocal microscopy and single-cell multimode analyzer indicated higher reactive oxygen species (ROS) levels in mature spheroids, potentially activating motility pathways. Additionally, DU 145 spheroids were treated with chemotherapy reagent Doxorubicin (DOX), and the results showed that spheroids culture for 7 and 11 days exhibited greater resistance to DOX compared to spheroids cultured for 3 days. These findings highlighted the importance of considering spheroid maturity in cancer research and drug development, emphasizing the need for systematic analysis of spheroid growth conditions to ensure reproducible and reliable experimental settings.</div></div>\",\"PeriodicalId\":8766,\"journal\":{\"name\":\"Biochemical Engineering Journal\",\"volume\":\"213 \",\"pages\":\"Article 109567\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369703X24003541\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24003541","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
The impact of 3D tumor spheroid maturity on cell migration and invasion dynamics
Cell motility is crucial in cancer metastasis, and understanding its regulation in tumor cells is vital for developing anti-metastatic therapies. Traditional 2D cell culture assays provide insights into cell migration but fail to replicate the complex 3D architecture of tissues in vivo. 3D cell culture models like tumor spheroids have been applied for cell migration tests. This study investigates the role of spheroid maturity in tumor cell motility, hypothesizing that spheroid maturity mirrors physiological conditions in solid tumors. Human prostate (DU 145), breast (MCF-7), and murine breast (EMT-6) cancer cells were cultured into spheroids of varying time (3, 7, and 11 days). The migration and invasion of these spheroids were analyzed, revealing that 11-day-old DU 145 spheroids demonstrated the greatest horizontal migration, correlating with RNA-seq data showing increased cell adhesion, cytoskeleton dynamics, and motility pathways. Confocal microscopy and single-cell multimode analyzer indicated higher reactive oxygen species (ROS) levels in mature spheroids, potentially activating motility pathways. Additionally, DU 145 spheroids were treated with chemotherapy reagent Doxorubicin (DOX), and the results showed that spheroids culture for 7 and 11 days exhibited greater resistance to DOX compared to spheroids cultured for 3 days. These findings highlighted the importance of considering spheroid maturity in cancer research and drug development, emphasizing the need for systematic analysis of spheroid growth conditions to ensure reproducible and reliable experimental settings.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.