Shunta Xu , Chengxin Dou , Liyang Xi , Songjie Tian , Weijie Li , Hao Liu
{"title":"关于漩涡燃烧、非预混合 MILD 燃烧和预混合 MILD 燃烧的建立、燃料-N 转化和传热的实验与数值研究","authors":"Shunta Xu , Chengxin Dou , Liyang Xi , Songjie Tian , Weijie Li , Hao Liu","doi":"10.1016/j.fuel.2024.133719","DOIUrl":null,"url":null,"abstract":"<div><div>Moderate or intense low-oxygen dilution (MILD) combustion has become much more attractive due to its advantage of low NO<sub>x</sub> emissions. This paper undertakes a combined experimental and numerical study to examine the behaviors of establishment, fuel-N conversion, and heat transfer of swirl, non-premixed MILD, and premixed MILD combustion with non-preheated air in a 20-kW laboratory-scale furnace. In particular, the threshold wall temperature for achieving non-preheated CH<sub>4</sub>/air MILD combustion in the non-premixed and premixed fuel/air jet modes is experimentally obtained. In swirl, non-premixed MILD, and premixed MILD combustion, fuel-NO emission is measured over a wide range of NH<sub>3</sub> mole fractions in the fuel (<span><math><msub><mi>X</mi><msub><mtext>NH</mtext><mtext>3</mtext></msub></msub></math></span>) from 0 to 3 % and fuel–air equivalence ratios (<em>φ</em>) from 0.8 to 1.2 when burning NH<sub>3</sub>-doped CH<sub>4</sub>; meanwhile, their difference in the fuel-N conversion mechanism is numerically revealed, especially from fuel-lean to fuel-rich conditions. The characteristics of energy balance and heat transfer in swirl, non-premixed MILD, and premixed MILD combustion are further comparatively analyzed. Results show that, the threshold wall temperature for forming non-preheated MILD combustion is reduced from ∼ 915 to ∼ 825 K when the non-premixed mode is changed to the premixed mode. Compared to swirl combustion, MILD combustion can reduce fuel-NO emissions by over 25 %. Interestingly, in MILD combustion, the non-premixed mode shows lower NO emissions under fuel-lean conditions due to less NO formation via <span><math><msub><mi>NH</mi><mn>3</mn></msub><mover><mo>→</mo><mrow><mo>+</mo><mi>OH</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>O</mi></mrow></mover><msub><mi>NH</mi><mn>2</mn></msub><mover><mo>→</mo><mrow><mo>+</mo><mi>O</mi></mrow></mover><mi>HNO</mi><mover><mo>→</mo><mrow><mo>+</mo><msub><mrow><mi>H</mi><mo>,</mo><mi>OH</mi><mo>,</mo><mi>O</mi><mo>,</mo><mi>O</mi></mrow><mn>2</mn></msub></mrow></mover><mi>NO</mi></math></span>, whereas NO emissions are lower in the premixed mode under reducing conditions as a result of less NO formation via HNO + H/OH → NO and more NO reduction via conversion of NO to NO<sub>2</sub>. Moreover, fuel-NO reduction, which proceeds mainly by reburning and selective non-catalytic reduction (SNCR) via <span><math><mi>NO</mi><mover><mo>→</mo><mrow><mo>+</mo><msub><mi>CH</mi><mrow><mi>i</mi><mo>=</mo><mn>0</mn><mo>-</mo><mn>3</mn></mrow></msub><mspace></mspace><mi>or</mi><mspace></mspace><mi>HCCO</mi></mrow></mover><mrow><mo>(</mo><mi>CN</mi><mo>/</mo><mi>HCNO</mi><mo>→</mo><mo>)</mo></mrow><mi>HCN</mi><mo>→</mo><mo>⋯</mo><mo>→</mo><msub><mi>N</mi><mn>2</mn></msub></math></span>, <span><math><mi>NO</mi><mover><mo>→</mo><mrow><mo>+</mo><msub><mi>NH</mi><mn>2</mn></msub><mo>,</mo><mspace></mspace><mi>NH</mi><mo>,</mo><mspace></mspace><mi>N</mi></mrow></mover><msub><mi>N</mi><mn>2</mn></msub></math></span>, and <span><math><mi>NO</mi><mover><mo>→</mo><mrow><mo>+</mo><mi>NH</mi></mrow></mover><msub><mrow><msub><mi>N</mi><mn>2</mn></msub><mi>O</mi><mover><mo>→</mo><mrow><mo>+</mo><mi>H</mi></mrow></mover><mi>N</mi></mrow><mn>2</mn></msub></math></span>, becomes more important in MILD combustion than in swirl combustion. Compared to swirl combustion, MILD combustion is characterized by lower heat flux transferred to the furnace walls (e.g., 47.3 %) and more exhaust energy loss through the chimney (e.g., 52.7 %) under non-preheated conditions.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"382 ","pages":"Article 133719"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and numerical study on establishment, fuel-N conversion, and heat transfer of swirl, non-premixed MILD, and premixed MILD combustion\",\"authors\":\"Shunta Xu , Chengxin Dou , Liyang Xi , Songjie Tian , Weijie Li , Hao Liu\",\"doi\":\"10.1016/j.fuel.2024.133719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Moderate or intense low-oxygen dilution (MILD) combustion has become much more attractive due to its advantage of low NO<sub>x</sub> emissions. This paper undertakes a combined experimental and numerical study to examine the behaviors of establishment, fuel-N conversion, and heat transfer of swirl, non-premixed MILD, and premixed MILD combustion with non-preheated air in a 20-kW laboratory-scale furnace. In particular, the threshold wall temperature for achieving non-preheated CH<sub>4</sub>/air MILD combustion in the non-premixed and premixed fuel/air jet modes is experimentally obtained. In swirl, non-premixed MILD, and premixed MILD combustion, fuel-NO emission is measured over a wide range of NH<sub>3</sub> mole fractions in the fuel (<span><math><msub><mi>X</mi><msub><mtext>NH</mtext><mtext>3</mtext></msub></msub></math></span>) from 0 to 3 % and fuel–air equivalence ratios (<em>φ</em>) from 0.8 to 1.2 when burning NH<sub>3</sub>-doped CH<sub>4</sub>; meanwhile, their difference in the fuel-N conversion mechanism is numerically revealed, especially from fuel-lean to fuel-rich conditions. The characteristics of energy balance and heat transfer in swirl, non-premixed MILD, and premixed MILD combustion are further comparatively analyzed. Results show that, the threshold wall temperature for forming non-preheated MILD combustion is reduced from ∼ 915 to ∼ 825 K when the non-premixed mode is changed to the premixed mode. Compared to swirl combustion, MILD combustion can reduce fuel-NO emissions by over 25 %. Interestingly, in MILD combustion, the non-premixed mode shows lower NO emissions under fuel-lean conditions due to less NO formation via <span><math><msub><mi>NH</mi><mn>3</mn></msub><mover><mo>→</mo><mrow><mo>+</mo><mi>OH</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>O</mi></mrow></mover><msub><mi>NH</mi><mn>2</mn></msub><mover><mo>→</mo><mrow><mo>+</mo><mi>O</mi></mrow></mover><mi>HNO</mi><mover><mo>→</mo><mrow><mo>+</mo><msub><mrow><mi>H</mi><mo>,</mo><mi>OH</mi><mo>,</mo><mi>O</mi><mo>,</mo><mi>O</mi></mrow><mn>2</mn></msub></mrow></mover><mi>NO</mi></math></span>, whereas NO emissions are lower in the premixed mode under reducing conditions as a result of less NO formation via HNO + H/OH → NO and more NO reduction via conversion of NO to NO<sub>2</sub>. Moreover, fuel-NO reduction, which proceeds mainly by reburning and selective non-catalytic reduction (SNCR) via <span><math><mi>NO</mi><mover><mo>→</mo><mrow><mo>+</mo><msub><mi>CH</mi><mrow><mi>i</mi><mo>=</mo><mn>0</mn><mo>-</mo><mn>3</mn></mrow></msub><mspace></mspace><mi>or</mi><mspace></mspace><mi>HCCO</mi></mrow></mover><mrow><mo>(</mo><mi>CN</mi><mo>/</mo><mi>HCNO</mi><mo>→</mo><mo>)</mo></mrow><mi>HCN</mi><mo>→</mo><mo>⋯</mo><mo>→</mo><msub><mi>N</mi><mn>2</mn></msub></math></span>, <span><math><mi>NO</mi><mover><mo>→</mo><mrow><mo>+</mo><msub><mi>NH</mi><mn>2</mn></msub><mo>,</mo><mspace></mspace><mi>NH</mi><mo>,</mo><mspace></mspace><mi>N</mi></mrow></mover><msub><mi>N</mi><mn>2</mn></msub></math></span>, and <span><math><mi>NO</mi><mover><mo>→</mo><mrow><mo>+</mo><mi>NH</mi></mrow></mover><msub><mrow><msub><mi>N</mi><mn>2</mn></msub><mi>O</mi><mover><mo>→</mo><mrow><mo>+</mo><mi>H</mi></mrow></mover><mi>N</mi></mrow><mn>2</mn></msub></math></span>, becomes more important in MILD combustion than in swirl combustion. Compared to swirl combustion, MILD combustion is characterized by lower heat flux transferred to the furnace walls (e.g., 47.3 %) and more exhaust energy loss through the chimney (e.g., 52.7 %) under non-preheated conditions.</div></div>\",\"PeriodicalId\":325,\"journal\":{\"name\":\"Fuel\",\"volume\":\"382 \",\"pages\":\"Article 133719\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016236124028680\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124028680","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Experimental and numerical study on establishment, fuel-N conversion, and heat transfer of swirl, non-premixed MILD, and premixed MILD combustion
Moderate or intense low-oxygen dilution (MILD) combustion has become much more attractive due to its advantage of low NOx emissions. This paper undertakes a combined experimental and numerical study to examine the behaviors of establishment, fuel-N conversion, and heat transfer of swirl, non-premixed MILD, and premixed MILD combustion with non-preheated air in a 20-kW laboratory-scale furnace. In particular, the threshold wall temperature for achieving non-preheated CH4/air MILD combustion in the non-premixed and premixed fuel/air jet modes is experimentally obtained. In swirl, non-premixed MILD, and premixed MILD combustion, fuel-NO emission is measured over a wide range of NH3 mole fractions in the fuel () from 0 to 3 % and fuel–air equivalence ratios (φ) from 0.8 to 1.2 when burning NH3-doped CH4; meanwhile, their difference in the fuel-N conversion mechanism is numerically revealed, especially from fuel-lean to fuel-rich conditions. The characteristics of energy balance and heat transfer in swirl, non-premixed MILD, and premixed MILD combustion are further comparatively analyzed. Results show that, the threshold wall temperature for forming non-preheated MILD combustion is reduced from ∼ 915 to ∼ 825 K when the non-premixed mode is changed to the premixed mode. Compared to swirl combustion, MILD combustion can reduce fuel-NO emissions by over 25 %. Interestingly, in MILD combustion, the non-premixed mode shows lower NO emissions under fuel-lean conditions due to less NO formation via , whereas NO emissions are lower in the premixed mode under reducing conditions as a result of less NO formation via HNO + H/OH → NO and more NO reduction via conversion of NO to NO2. Moreover, fuel-NO reduction, which proceeds mainly by reburning and selective non-catalytic reduction (SNCR) via , , and , becomes more important in MILD combustion than in swirl combustion. Compared to swirl combustion, MILD combustion is characterized by lower heat flux transferred to the furnace walls (e.g., 47.3 %) and more exhaust energy loss through the chimney (e.g., 52.7 %) under non-preheated conditions.
期刊介绍:
The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.