{"title":"楝树锯屑和高密度聚乙烯共同热解产生富含芳香烃的生物油:沸石介孔的意义","authors":"Jingyue Wang , Liu Wu , Fanfan Huang , Jie Liang","doi":"10.1016/j.fuel.2024.133724","DOIUrl":null,"url":null,"abstract":"<div><div>Co-pyrolysis of biomass and plastic was conducive to aromatics-rich bio-oil production, though the significance of zeolite mesopores in co-pyrolysis was still lacking and required further investigation. Herein, a conventional ZSM-5 and its two mesoporous deviants (hollow HS-ZSM-5 and core–shell hierarchical ZSM-5@SBA-15) were synthesized and utilized as catalysts in the co-pyrolysis of neem sawdust (NS) and high-density polyethylene (HDPE). Results showed that compared to ZSM-5, both the mesoporous zeolites enhanced aromatics production. And HS-ZSM-5 with an interior mesoporous cavity performed better in improving the monocyclic aromatic hydrocarbons (MAHs) fraction. An optimization of co-pyrolysis conditions (<em>e.g.</em>, HDPE percentage, catalyst loading, co-pyrolysis temperature) further improved the MAHs selectivity to 33.8 area%. The synergy between NS and HDPE over mesoporous zeolites was also compared. While the aromatization between short-chain olefins was dominant in aromatics production over ZSM-5@SBA-15, the Diels–Alder reaction between NS-derived furans and HDPE-derived olefins contributed more in that over HS-ZSM-5.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"382 ","pages":"Article 133724"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-pyrolysis of neem sawdust and high-density polyethylene towards aromatic-rich bio-oil: Significance of zeolite mesopores\",\"authors\":\"Jingyue Wang , Liu Wu , Fanfan Huang , Jie Liang\",\"doi\":\"10.1016/j.fuel.2024.133724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Co-pyrolysis of biomass and plastic was conducive to aromatics-rich bio-oil production, though the significance of zeolite mesopores in co-pyrolysis was still lacking and required further investigation. Herein, a conventional ZSM-5 and its two mesoporous deviants (hollow HS-ZSM-5 and core–shell hierarchical ZSM-5@SBA-15) were synthesized and utilized as catalysts in the co-pyrolysis of neem sawdust (NS) and high-density polyethylene (HDPE). Results showed that compared to ZSM-5, both the mesoporous zeolites enhanced aromatics production. And HS-ZSM-5 with an interior mesoporous cavity performed better in improving the monocyclic aromatic hydrocarbons (MAHs) fraction. An optimization of co-pyrolysis conditions (<em>e.g.</em>, HDPE percentage, catalyst loading, co-pyrolysis temperature) further improved the MAHs selectivity to 33.8 area%. The synergy between NS and HDPE over mesoporous zeolites was also compared. While the aromatization between short-chain olefins was dominant in aromatics production over ZSM-5@SBA-15, the Diels–Alder reaction between NS-derived furans and HDPE-derived olefins contributed more in that over HS-ZSM-5.</div></div>\",\"PeriodicalId\":325,\"journal\":{\"name\":\"Fuel\",\"volume\":\"382 \",\"pages\":\"Article 133724\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016236124028734\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124028734","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Co-pyrolysis of neem sawdust and high-density polyethylene towards aromatic-rich bio-oil: Significance of zeolite mesopores
Co-pyrolysis of biomass and plastic was conducive to aromatics-rich bio-oil production, though the significance of zeolite mesopores in co-pyrolysis was still lacking and required further investigation. Herein, a conventional ZSM-5 and its two mesoporous deviants (hollow HS-ZSM-5 and core–shell hierarchical ZSM-5@SBA-15) were synthesized and utilized as catalysts in the co-pyrolysis of neem sawdust (NS) and high-density polyethylene (HDPE). Results showed that compared to ZSM-5, both the mesoporous zeolites enhanced aromatics production. And HS-ZSM-5 with an interior mesoporous cavity performed better in improving the monocyclic aromatic hydrocarbons (MAHs) fraction. An optimization of co-pyrolysis conditions (e.g., HDPE percentage, catalyst loading, co-pyrolysis temperature) further improved the MAHs selectivity to 33.8 area%. The synergy between NS and HDPE over mesoporous zeolites was also compared. While the aromatization between short-chain olefins was dominant in aromatics production over ZSM-5@SBA-15, the Diels–Alder reaction between NS-derived furans and HDPE-derived olefins contributed more in that over HS-ZSM-5.
期刊介绍:
The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.