Qing-Qing Sun , Cong Liu , Guo-Qiang Zhang , Zhong-Qiu Liu , Mei-Ying Wang , Ai-Min Wang , Yujing Liu , Runpu Shen , Anguo Ying
{"title":"氧空位和受挫路易斯对协同提高催化加氢脱氧性能","authors":"Qing-Qing Sun , Cong Liu , Guo-Qiang Zhang , Zhong-Qiu Liu , Mei-Ying Wang , Ai-Min Wang , Yujing Liu , Runpu Shen , Anguo Ying","doi":"10.1016/j.fuel.2024.133748","DOIUrl":null,"url":null,"abstract":"<div><div>The catalytic hydrodeoxygenation (CHDO) of lignin into saturated cycloalkanes not only enhances the efficient utilization of lignin but also reduces reliance on high-density liquid fuels (HDLFs), given the importance of saturated cycloalkanes as key constituents of HDLFs. The main challenge in lignin CHDO towards HDLFs is efficiently removing oxygen-atom while maintaining high selectivity for the desired saturated cycloalkanes. Herein, we report for the first time the fabrication of a Ni/N<sub>0.8-</sub>CeO<sub>2</sub>-500 composite with abundant oxygen vacancies (OVs) and adjacent frustrated Lewis pairs (FLPs), achieved through the capping effect of ionic liquids. The FLPs of N/Ce<sup>3+</sup> within Ni/N<sub>0.8</sub>-CeO<sub>2</sub>-500, mediated by OVs, not only enhance the dispersion of Ni species but also effectively facilitate the conversion of H<sub>2</sub> into active hydrogen (H*) through relay catalysis involving the Ni species. This integration, combining the oxygen atom-specific recognition of OVs with the adjacent FLPs of N/Ce<sup>3+</sup> for the tandem generation of H*, significantly promotes the adsorption/cleavage of C<sub>ar/alk</sub>−O−C<sub>alk</sub> bonds, oxygen-atom removal, and hydrogenation of aromatic rings, ultimately catalyzing the one-step production of saturated cycloalkanes. The synergistic catalytic interplay results in a remarkable yield of saturated cycloalkanes (up to 88.2 wt%) during the CHDO of Kraft lignin, representing the highest reported value under similar conditions to date. A combination of diverse characterizations, experimental analyses, and kinetic studies collectively reinforces the notion that <em>in-situ</em> N-doping of CeO<sub>2</sub> increases the electron cloud density around Ce species, forming N-Ce<sup>δ+</sup> entities that, at high temperatures, create OVs and adjacent FLPs of N-Ce<sup>3+</sup>, collectively enhancing lignin CHDO to yield saturated cycloalkanes.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"382 ","pages":"Article 133748"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic enhancement of catalytic hydrodeoxygenation performance by oxygen vacancies and frustrated Lewis pairs\",\"authors\":\"Qing-Qing Sun , Cong Liu , Guo-Qiang Zhang , Zhong-Qiu Liu , Mei-Ying Wang , Ai-Min Wang , Yujing Liu , Runpu Shen , Anguo Ying\",\"doi\":\"10.1016/j.fuel.2024.133748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The catalytic hydrodeoxygenation (CHDO) of lignin into saturated cycloalkanes not only enhances the efficient utilization of lignin but also reduces reliance on high-density liquid fuels (HDLFs), given the importance of saturated cycloalkanes as key constituents of HDLFs. The main challenge in lignin CHDO towards HDLFs is efficiently removing oxygen-atom while maintaining high selectivity for the desired saturated cycloalkanes. Herein, we report for the first time the fabrication of a Ni/N<sub>0.8-</sub>CeO<sub>2</sub>-500 composite with abundant oxygen vacancies (OVs) and adjacent frustrated Lewis pairs (FLPs), achieved through the capping effect of ionic liquids. The FLPs of N/Ce<sup>3+</sup> within Ni/N<sub>0.8</sub>-CeO<sub>2</sub>-500, mediated by OVs, not only enhance the dispersion of Ni species but also effectively facilitate the conversion of H<sub>2</sub> into active hydrogen (H*) through relay catalysis involving the Ni species. This integration, combining the oxygen atom-specific recognition of OVs with the adjacent FLPs of N/Ce<sup>3+</sup> for the tandem generation of H*, significantly promotes the adsorption/cleavage of C<sub>ar/alk</sub>−O−C<sub>alk</sub> bonds, oxygen-atom removal, and hydrogenation of aromatic rings, ultimately catalyzing the one-step production of saturated cycloalkanes. The synergistic catalytic interplay results in a remarkable yield of saturated cycloalkanes (up to 88.2 wt%) during the CHDO of Kraft lignin, representing the highest reported value under similar conditions to date. A combination of diverse characterizations, experimental analyses, and kinetic studies collectively reinforces the notion that <em>in-situ</em> N-doping of CeO<sub>2</sub> increases the electron cloud density around Ce species, forming N-Ce<sup>δ+</sup> entities that, at high temperatures, create OVs and adjacent FLPs of N-Ce<sup>3+</sup>, collectively enhancing lignin CHDO to yield saturated cycloalkanes.</div></div>\",\"PeriodicalId\":325,\"journal\":{\"name\":\"Fuel\",\"volume\":\"382 \",\"pages\":\"Article 133748\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016236124028977\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124028977","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
将木质素催化加氢脱氧成饱和环烷烃(CHDO)不仅能提高木质素的有效利用率,还能减少对高密度液体燃料(HDLF)的依赖,因为饱和环烷烃是高密度液体燃料的主要成分。木质素 CHDO 转化为高密度液体燃料的主要挑战在于高效去除氧原子,同时保持对所需饱和环烷烃的高选择性。在此,我们首次报道了通过离子液体的封盖效应制备出具有丰富氧空位(OV)和相邻受挫路易斯对(FLP)的 Ni/N0.8-CeO2-500 复合材料。在 OVs 的介导下,Ni/N0.8-CeO2-500 中 N/Ce3+ 的 FLPs 不仅增强了 Ni 物种的分散性,而且通过 Ni 物种的接力催化,有效地促进了 H2 向活性氢(H*)的转化。这种整合将 OVs 的氧原子特异性识别与 N/Ce3+ 的相邻 FLPs 串联生成 H*结合在一起,极大地促进了 Car/alk-O-Calk 键的吸附/裂解、氧原子脱除和芳香环的氢化,最终催化了饱和环烷的一步法生产。在牛皮纸木质素的 CHDO 过程中,协同催化作用产生了显著的饱和环烷烃产量(高达 88.2 wt%),这是迄今为止在类似条件下报告的最高值。通过对各种特性、实验分析和动力学研究的综合分析,我们进一步认识到,CeO2 的原位 N 掺杂增加了 Ce 物种周围的电子云密度,形成了 N-Ceδ+ 实体,这些实体在高温下会产生 OV 和邻近的 N-Ce3+ FLP,从而共同促进木质素的 CHDO,产生饱和环烷。
Synergistic enhancement of catalytic hydrodeoxygenation performance by oxygen vacancies and frustrated Lewis pairs
The catalytic hydrodeoxygenation (CHDO) of lignin into saturated cycloalkanes not only enhances the efficient utilization of lignin but also reduces reliance on high-density liquid fuels (HDLFs), given the importance of saturated cycloalkanes as key constituents of HDLFs. The main challenge in lignin CHDO towards HDLFs is efficiently removing oxygen-atom while maintaining high selectivity for the desired saturated cycloalkanes. Herein, we report for the first time the fabrication of a Ni/N0.8-CeO2-500 composite with abundant oxygen vacancies (OVs) and adjacent frustrated Lewis pairs (FLPs), achieved through the capping effect of ionic liquids. The FLPs of N/Ce3+ within Ni/N0.8-CeO2-500, mediated by OVs, not only enhance the dispersion of Ni species but also effectively facilitate the conversion of H2 into active hydrogen (H*) through relay catalysis involving the Ni species. This integration, combining the oxygen atom-specific recognition of OVs with the adjacent FLPs of N/Ce3+ for the tandem generation of H*, significantly promotes the adsorption/cleavage of Car/alk−O−Calk bonds, oxygen-atom removal, and hydrogenation of aromatic rings, ultimately catalyzing the one-step production of saturated cycloalkanes. The synergistic catalytic interplay results in a remarkable yield of saturated cycloalkanes (up to 88.2 wt%) during the CHDO of Kraft lignin, representing the highest reported value under similar conditions to date. A combination of diverse characterizations, experimental analyses, and kinetic studies collectively reinforces the notion that in-situ N-doping of CeO2 increases the electron cloud density around Ce species, forming N-Ceδ+ entities that, at high temperatures, create OVs and adjacent FLPs of N-Ce3+, collectively enhancing lignin CHDO to yield saturated cycloalkanes.
期刊介绍:
The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.