Tanvir Ahmed , Sheikh Noman Shiddique , Abdul Kuddus , Mainul Hossain , Shinichiro Mouri , Jaker Hossain
{"title":"设计和分析具有协同优化的顶部 BaSnS3 和底部 AgTaS3 包晶子电池的无机串联结构","authors":"Tanvir Ahmed , Sheikh Noman Shiddique , Abdul Kuddus , Mainul Hossain , Shinichiro Mouri , Jaker Hossain","doi":"10.1016/j.solener.2024.113111","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite materials are revolutionizing the solar cell (SC) industry, continually enhancing their properties and establishing a prominent photovoltaic technology. Among these, BaSnS<sub>3</sub> (BTS) and AgTaS<sub>3</sub> (ATS) stand out for their strong potential as absorber layers. These inorganic chalcogenide perovskites address the drawbacks of their organic counterparts, being both lead-free and non-toxic, thereby making them highly suitable for photovoltaic (PV) applications. The exploration of BTS and ATS as absorber layers in a tandem solar cell’s top and bottom cells has yielded remarkable outcomes. The innovative tandem solar cell design features a top cell structured as n-WS<sub>2</sub>/<em>p</em>-BaSnS<sub>3</sub>/<em>p</em><sup>+</sup>-MoS<sub>2</sub> and a bottom cell configured as <em>n</em>-WS<em><sub>2</sub></em>/<em>p</em>-AgTaS<sub>3</sub>/<em>p</em><sup>+</sup>-GeS. This theoretical study using SCAPS-1D demonstrates a high efficiency of 42.57 % with a <em>V</em><sub>OC</sub> of 2.03 V, a <em>J</em><sub>SC</sub> of 23.29 mA/cm<sup>2</sup>, and an <em>FF</em> of 89.85 %. These impressive results are achieved with adjusted layer thickness, carrier doping and defect levels, highlighting the strong potential of BaSnS<sub>3</sub> and AgTaS<sub>3</sub> photoactive materials. The findings reveal the viability of innovative, all-inorganic perovskite-based tandem solar cells, offering a promising avenue for future sustainable and high-efficiency photovoltaic device technologies.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"284 ","pages":"Article 113111"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and analysis of inorganic tandem architecture with synergistically optimized BaSnS3 top and AgTaS3 bottom perovskite Sub-Cells\",\"authors\":\"Tanvir Ahmed , Sheikh Noman Shiddique , Abdul Kuddus , Mainul Hossain , Shinichiro Mouri , Jaker Hossain\",\"doi\":\"10.1016/j.solener.2024.113111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Perovskite materials are revolutionizing the solar cell (SC) industry, continually enhancing their properties and establishing a prominent photovoltaic technology. Among these, BaSnS<sub>3</sub> (BTS) and AgTaS<sub>3</sub> (ATS) stand out for their strong potential as absorber layers. These inorganic chalcogenide perovskites address the drawbacks of their organic counterparts, being both lead-free and non-toxic, thereby making them highly suitable for photovoltaic (PV) applications. The exploration of BTS and ATS as absorber layers in a tandem solar cell’s top and bottom cells has yielded remarkable outcomes. The innovative tandem solar cell design features a top cell structured as n-WS<sub>2</sub>/<em>p</em>-BaSnS<sub>3</sub>/<em>p</em><sup>+</sup>-MoS<sub>2</sub> and a bottom cell configured as <em>n</em>-WS<em><sub>2</sub></em>/<em>p</em>-AgTaS<sub>3</sub>/<em>p</em><sup>+</sup>-GeS. This theoretical study using SCAPS-1D demonstrates a high efficiency of 42.57 % with a <em>V</em><sub>OC</sub> of 2.03 V, a <em>J</em><sub>SC</sub> of 23.29 mA/cm<sup>2</sup>, and an <em>FF</em> of 89.85 %. These impressive results are achieved with adjusted layer thickness, carrier doping and defect levels, highlighting the strong potential of BaSnS<sub>3</sub> and AgTaS<sub>3</sub> photoactive materials. The findings reveal the viability of innovative, all-inorganic perovskite-based tandem solar cells, offering a promising avenue for future sustainable and high-efficiency photovoltaic device technologies.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"284 \",\"pages\":\"Article 113111\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X24008065\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24008065","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Design and analysis of inorganic tandem architecture with synergistically optimized BaSnS3 top and AgTaS3 bottom perovskite Sub-Cells
Perovskite materials are revolutionizing the solar cell (SC) industry, continually enhancing their properties and establishing a prominent photovoltaic technology. Among these, BaSnS3 (BTS) and AgTaS3 (ATS) stand out for their strong potential as absorber layers. These inorganic chalcogenide perovskites address the drawbacks of their organic counterparts, being both lead-free and non-toxic, thereby making them highly suitable for photovoltaic (PV) applications. The exploration of BTS and ATS as absorber layers in a tandem solar cell’s top and bottom cells has yielded remarkable outcomes. The innovative tandem solar cell design features a top cell structured as n-WS2/p-BaSnS3/p+-MoS2 and a bottom cell configured as n-WS2/p-AgTaS3/p+-GeS. This theoretical study using SCAPS-1D demonstrates a high efficiency of 42.57 % with a VOC of 2.03 V, a JSC of 23.29 mA/cm2, and an FF of 89.85 %. These impressive results are achieved with adjusted layer thickness, carrier doping and defect levels, highlighting the strong potential of BaSnS3 and AgTaS3 photoactive materials. The findings reveal the viability of innovative, all-inorganic perovskite-based tandem solar cells, offering a promising avenue for future sustainable and high-efficiency photovoltaic device technologies.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass