Isabel Melendez, Karl B. Morgan, Casey J. Troxler, Rafael M. Rodriguez, Sandra K.S. Boetcher
{"title":"使用悬浮在光固化树脂中的封装相变材料进行热能储存应用的罐式光聚合反应","authors":"Isabel Melendez, Karl B. Morgan, Casey J. Troxler, Rafael M. Rodriguez, Sandra K.S. Boetcher","doi":"10.1016/j.tsep.2024.102986","DOIUrl":null,"url":null,"abstract":"<div><div>A novel approach to additively manufacture latent heat thermal energy storage heat exchangers through the development of microencapsulated phase change material (MEPCM) suspensions in photocurable resin for vat photopolymerization (VPP) 3D printing is presented. Using MEPCM addresses the leakage risks that have typically been associated with PCMs and subsequently makes the particulates a suitable additive for VPP 3D printing. In the current study, VPP was employed to fabricate functional composites with varying MEPCM mass fractions for thermal, rheological, microstructure, and chemical characterization. Microstructure visualization was conducted to assess the overall distribution of MEPCM within the 3D printed samples and to confirm the structural integrity of the encapsulated particles after printing. The influence of the base resin viscosity was explored by investigating two photocurable resins with different viscosities—a high-tensile UV photopolymer and an ABS-like resin—during the printing process. Thermal properties, such as latent heat of fusion, phase-change temperature, thermal conductivity, and decomposition temperature of the 3D printed samples were determined. Rheology was used to observe the effect of varying shear rates on the MEPCM-resin mixtures to identify the optimal viscoelastic properties for VPP 3D printing. It was determined that the ABS-like resin was able to contain a larger amount of PCM (40 wt%) while maintaining printability due to the lower viscosity of the corresponding pure resin. The 40 wt% MEPCM composite exhibited an average viscosity of 18,817 cPs, a maximum latent heat of fusion of 54.12 kJ/kg, and a 12.4% reduction in thermal conductivity compared to the pure polymer.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"56 ","pages":"Article 102986"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vat photopolymerization for thermal energy storage applications using encapsulated phase change material suspended in photocurable resin\",\"authors\":\"Isabel Melendez, Karl B. Morgan, Casey J. Troxler, Rafael M. Rodriguez, Sandra K.S. Boetcher\",\"doi\":\"10.1016/j.tsep.2024.102986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel approach to additively manufacture latent heat thermal energy storage heat exchangers through the development of microencapsulated phase change material (MEPCM) suspensions in photocurable resin for vat photopolymerization (VPP) 3D printing is presented. Using MEPCM addresses the leakage risks that have typically been associated with PCMs and subsequently makes the particulates a suitable additive for VPP 3D printing. In the current study, VPP was employed to fabricate functional composites with varying MEPCM mass fractions for thermal, rheological, microstructure, and chemical characterization. Microstructure visualization was conducted to assess the overall distribution of MEPCM within the 3D printed samples and to confirm the structural integrity of the encapsulated particles after printing. The influence of the base resin viscosity was explored by investigating two photocurable resins with different viscosities—a high-tensile UV photopolymer and an ABS-like resin—during the printing process. Thermal properties, such as latent heat of fusion, phase-change temperature, thermal conductivity, and decomposition temperature of the 3D printed samples were determined. Rheology was used to observe the effect of varying shear rates on the MEPCM-resin mixtures to identify the optimal viscoelastic properties for VPP 3D printing. It was determined that the ABS-like resin was able to contain a larger amount of PCM (40 wt%) while maintaining printability due to the lower viscosity of the corresponding pure resin. The 40 wt% MEPCM composite exhibited an average viscosity of 18,817 cPs, a maximum latent heat of fusion of 54.12 kJ/kg, and a 12.4% reduction in thermal conductivity compared to the pure polymer.</div></div>\",\"PeriodicalId\":23062,\"journal\":{\"name\":\"Thermal Science and Engineering Progress\",\"volume\":\"56 \",\"pages\":\"Article 102986\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Science and Engineering Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451904924006048\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924006048","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Vat photopolymerization for thermal energy storage applications using encapsulated phase change material suspended in photocurable resin
A novel approach to additively manufacture latent heat thermal energy storage heat exchangers through the development of microencapsulated phase change material (MEPCM) suspensions in photocurable resin for vat photopolymerization (VPP) 3D printing is presented. Using MEPCM addresses the leakage risks that have typically been associated with PCMs and subsequently makes the particulates a suitable additive for VPP 3D printing. In the current study, VPP was employed to fabricate functional composites with varying MEPCM mass fractions for thermal, rheological, microstructure, and chemical characterization. Microstructure visualization was conducted to assess the overall distribution of MEPCM within the 3D printed samples and to confirm the structural integrity of the encapsulated particles after printing. The influence of the base resin viscosity was explored by investigating two photocurable resins with different viscosities—a high-tensile UV photopolymer and an ABS-like resin—during the printing process. Thermal properties, such as latent heat of fusion, phase-change temperature, thermal conductivity, and decomposition temperature of the 3D printed samples were determined. Rheology was used to observe the effect of varying shear rates on the MEPCM-resin mixtures to identify the optimal viscoelastic properties for VPP 3D printing. It was determined that the ABS-like resin was able to contain a larger amount of PCM (40 wt%) while maintaining printability due to the lower viscosity of the corresponding pure resin. The 40 wt% MEPCM composite exhibited an average viscosity of 18,817 cPs, a maximum latent heat of fusion of 54.12 kJ/kg, and a 12.4% reduction in thermal conductivity compared to the pure polymer.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.