Sofia Bahmutsky, Florian Grassauer, Vivek Arulnathan, Nathan Pelletier
{"title":"大田作物种植精准农业的生命周期影响和成本审查","authors":"Sofia Bahmutsky, Florian Grassauer, Vivek Arulnathan, Nathan Pelletier","doi":"10.1016/j.spc.2024.11.010","DOIUrl":null,"url":null,"abstract":"<div><div>Assessing precision agriculture in crop production based on life cycle thinking and assessments allows for the consideration of multiple environmental as well as economic aspects at a systems level. Research at this intersection is, however, notably lacking. This review paper seeks to understand the current state of both environmental and economics research with respect to different agricultural crop production methods (orchard, vegetable, open field crop, etc.), regions, and the types of precision agriculture technologies applied in each context. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis method was used to answer three review questions to address a targeted subset of precision agriculture technologies relevant to field crop production, from both environmental and economic perspectives and at the global level. Fertilizer production/use and associated field-level emissions are the leading cause of environmental impacts in many life cycle impact categories, and energy and pesticide use also contribute significantly. For most environmental impact categories, the utilization of precision agriculture practices reduced these impacts as compared to conventional practices. Many precision agriculture technologies focus on nitrogen management, namely variable rate application of nutrients, but disproportionately in the context of high value crops. There is evidence that supports the notion that variable rate fertilization management leads to reduction in many but not necessarily all environmental impacts. Some studies reported no, or limited economic benefits associated with precision agriculture technologies, however overall results suggest that precision agriculture utilization delivers economic benefits either via cost savings, input savings, and/or increases to yield, margin, or profits. Variable rate technology is highlighted as a promising subset of precision agriculture technologies in terms of environmental impact reductions and economic benefits.</div></div>","PeriodicalId":48619,"journal":{"name":"Sustainable Production and Consumption","volume":"52 ","pages":"Pages 347-362"},"PeriodicalIF":10.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of life cycle impacts and costs of precision agriculture for cultivation of field crops\",\"authors\":\"Sofia Bahmutsky, Florian Grassauer, Vivek Arulnathan, Nathan Pelletier\",\"doi\":\"10.1016/j.spc.2024.11.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Assessing precision agriculture in crop production based on life cycle thinking and assessments allows for the consideration of multiple environmental as well as economic aspects at a systems level. Research at this intersection is, however, notably lacking. This review paper seeks to understand the current state of both environmental and economics research with respect to different agricultural crop production methods (orchard, vegetable, open field crop, etc.), regions, and the types of precision agriculture technologies applied in each context. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis method was used to answer three review questions to address a targeted subset of precision agriculture technologies relevant to field crop production, from both environmental and economic perspectives and at the global level. Fertilizer production/use and associated field-level emissions are the leading cause of environmental impacts in many life cycle impact categories, and energy and pesticide use also contribute significantly. For most environmental impact categories, the utilization of precision agriculture practices reduced these impacts as compared to conventional practices. Many precision agriculture technologies focus on nitrogen management, namely variable rate application of nutrients, but disproportionately in the context of high value crops. There is evidence that supports the notion that variable rate fertilization management leads to reduction in many but not necessarily all environmental impacts. Some studies reported no, or limited economic benefits associated with precision agriculture technologies, however overall results suggest that precision agriculture utilization delivers economic benefits either via cost savings, input savings, and/or increases to yield, margin, or profits. Variable rate technology is highlighted as a promising subset of precision agriculture technologies in terms of environmental impact reductions and economic benefits.</div></div>\",\"PeriodicalId\":48619,\"journal\":{\"name\":\"Sustainable Production and Consumption\",\"volume\":\"52 \",\"pages\":\"Pages 347-362\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Production and Consumption\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352550924003221\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Production and Consumption","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352550924003221","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
A review of life cycle impacts and costs of precision agriculture for cultivation of field crops
Assessing precision agriculture in crop production based on life cycle thinking and assessments allows for the consideration of multiple environmental as well as economic aspects at a systems level. Research at this intersection is, however, notably lacking. This review paper seeks to understand the current state of both environmental and economics research with respect to different agricultural crop production methods (orchard, vegetable, open field crop, etc.), regions, and the types of precision agriculture technologies applied in each context. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis method was used to answer three review questions to address a targeted subset of precision agriculture technologies relevant to field crop production, from both environmental and economic perspectives and at the global level. Fertilizer production/use and associated field-level emissions are the leading cause of environmental impacts in many life cycle impact categories, and energy and pesticide use also contribute significantly. For most environmental impact categories, the utilization of precision agriculture practices reduced these impacts as compared to conventional practices. Many precision agriculture technologies focus on nitrogen management, namely variable rate application of nutrients, but disproportionately in the context of high value crops. There is evidence that supports the notion that variable rate fertilization management leads to reduction in many but not necessarily all environmental impacts. Some studies reported no, or limited economic benefits associated with precision agriculture technologies, however overall results suggest that precision agriculture utilization delivers economic benefits either via cost savings, input savings, and/or increases to yield, margin, or profits. Variable rate technology is highlighted as a promising subset of precision agriculture technologies in terms of environmental impact reductions and economic benefits.
期刊介绍:
Sustainable production and consumption refers to the production and utilization of goods and services in a way that benefits society, is economically viable, and has minimal environmental impact throughout its entire lifespan. Our journal is dedicated to publishing top-notch interdisciplinary research and practical studies in this emerging field. We take a distinctive approach by examining the interplay between technology, consumption patterns, and policy to identify sustainable solutions for both production and consumption systems.