稳定的双功能镧系 MOF:同时实现二氧化碳捕获和催化

IF 7.2 2区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ying-chao Wang , Ming-ming Zhai , He-xiang Huang , Zheng-hui Shi , Yuan-zhe Li , Cheng-cheng Zhao , Kang-ning Xie , Xiu-yuan Li , Yan-fei Hu , Zhi-hua Qiao , Chi Tang , Chen-xu Zhang
{"title":"稳定的双功能镧系 MOF:同时实现二氧化碳捕获和催化","authors":"Ying-chao Wang ,&nbsp;Ming-ming Zhai ,&nbsp;He-xiang Huang ,&nbsp;Zheng-hui Shi ,&nbsp;Yuan-zhe Li ,&nbsp;Cheng-cheng Zhao ,&nbsp;Kang-ning Xie ,&nbsp;Xiu-yuan Li ,&nbsp;Yan-fei Hu ,&nbsp;Zhi-hua Qiao ,&nbsp;Chi Tang ,&nbsp;Chen-xu Zhang","doi":"10.1016/j.jcou.2024.102974","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon dioxide (CO<sub>2</sub>) capture has become a hot topic in recent years because of global warming issues. However, most research has focused primarily on gas capture, with limited methods available for achieving both CO<sub>2</sub> capture and conversion within a single material. Here, we synthesized FMU-101, a metal-organic framework (MOF) with metal-open sites, through the self-assembly of [1,1′-Biphenyl]-3,3′,5-tricarboxylic acid and lanthanide ions in a solvothermal environment. FMU-101 features hexagonal one-dimensional pores with a diameter of 1.4 nm. The presence of free dimethylamine cations and metal open sites in the channel contributes to its remarkable capability for selectively enriching CO<sub>2</sub> from CO<sub>2</sub>/CH<sub>4</sub> mixtures in dynamic breakthrough experiments. Furthermore, the metal-open sites in FMU-101 play a crucial role in CO<sub>2</sub> fixation, serving as effective catalytic sites for converting the adsorbed CO<sub>2</sub> into high-value chloropropylene carbonate, a versatile chemical intermediate. The segregation and conversion mechanisms were further elucidated through density-functional theory (DFT) calculations and Grand Canonical Monte Carlo (GCMC) simulations, which highlighted the critical role of metal-open sites in CO<sub>2</sub> adsorption and transformation.</div></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"89 ","pages":"Article 102974"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stable dual-function lanthanum MOF: Simultaneous CO2 capture and catalysis\",\"authors\":\"Ying-chao Wang ,&nbsp;Ming-ming Zhai ,&nbsp;He-xiang Huang ,&nbsp;Zheng-hui Shi ,&nbsp;Yuan-zhe Li ,&nbsp;Cheng-cheng Zhao ,&nbsp;Kang-ning Xie ,&nbsp;Xiu-yuan Li ,&nbsp;Yan-fei Hu ,&nbsp;Zhi-hua Qiao ,&nbsp;Chi Tang ,&nbsp;Chen-xu Zhang\",\"doi\":\"10.1016/j.jcou.2024.102974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbon dioxide (CO<sub>2</sub>) capture has become a hot topic in recent years because of global warming issues. However, most research has focused primarily on gas capture, with limited methods available for achieving both CO<sub>2</sub> capture and conversion within a single material. Here, we synthesized FMU-101, a metal-organic framework (MOF) with metal-open sites, through the self-assembly of [1,1′-Biphenyl]-3,3′,5-tricarboxylic acid and lanthanide ions in a solvothermal environment. FMU-101 features hexagonal one-dimensional pores with a diameter of 1.4 nm. The presence of free dimethylamine cations and metal open sites in the channel contributes to its remarkable capability for selectively enriching CO<sub>2</sub> from CO<sub>2</sub>/CH<sub>4</sub> mixtures in dynamic breakthrough experiments. Furthermore, the metal-open sites in FMU-101 play a crucial role in CO<sub>2</sub> fixation, serving as effective catalytic sites for converting the adsorbed CO<sub>2</sub> into high-value chloropropylene carbonate, a versatile chemical intermediate. The segregation and conversion mechanisms were further elucidated through density-functional theory (DFT) calculations and Grand Canonical Monte Carlo (GCMC) simulations, which highlighted the critical role of metal-open sites in CO<sub>2</sub> adsorption and transformation.</div></div>\",\"PeriodicalId\":350,\"journal\":{\"name\":\"Journal of CO2 Utilization\",\"volume\":\"89 \",\"pages\":\"Article 102974\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of CO2 Utilization\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212982024003093\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982024003093","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,由于全球变暖问题,二氧化碳(CO2)捕集已成为一个热门话题。然而,大多数研究主要集中在气体捕集方面,在单一材料中同时实现二氧化碳捕集和转化的方法非常有限。在这里,我们通过[1,1′-联苯]-3,3′,5-三羧酸和镧离子在溶热环境中的自组装,合成了具有金属开放位点的金属有机框架(MOF)FMU-101。FMU-101 具有直径为 1.4 纳米的六角形一维孔隙。由于通道中存在游离的二甲基胺阳离子和金属开放位点,因此在动态突破实验中,FMU-101 能够从 CO2/CH4 混合物中选择性地富集二氧化碳。此外,FMU-101 中的金属开放位点在二氧化碳固定过程中发挥了关键作用,是将吸附的二氧化碳转化为高价值的碳酸氯丙烯酯(一种多功能化学中间体)的有效催化位点。通过密度函数理论(DFT)计算和大卡农蒙特卡罗(GCMC)模拟,进一步阐明了分离和转化机制,突出了金属开放位点在二氧化碳吸附和转化中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stable dual-function lanthanum MOF: Simultaneous CO2 capture and catalysis
Carbon dioxide (CO2) capture has become a hot topic in recent years because of global warming issues. However, most research has focused primarily on gas capture, with limited methods available for achieving both CO2 capture and conversion within a single material. Here, we synthesized FMU-101, a metal-organic framework (MOF) with metal-open sites, through the self-assembly of [1,1′-Biphenyl]-3,3′,5-tricarboxylic acid and lanthanide ions in a solvothermal environment. FMU-101 features hexagonal one-dimensional pores with a diameter of 1.4 nm. The presence of free dimethylamine cations and metal open sites in the channel contributes to its remarkable capability for selectively enriching CO2 from CO2/CH4 mixtures in dynamic breakthrough experiments. Furthermore, the metal-open sites in FMU-101 play a crucial role in CO2 fixation, serving as effective catalytic sites for converting the adsorbed CO2 into high-value chloropropylene carbonate, a versatile chemical intermediate. The segregation and conversion mechanisms were further elucidated through density-functional theory (DFT) calculations and Grand Canonical Monte Carlo (GCMC) simulations, which highlighted the critical role of metal-open sites in CO2 adsorption and transformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of CO2 Utilization
Journal of CO2 Utilization CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.90
自引率
10.40%
发文量
406
审稿时长
2.8 months
期刊介绍: The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials. The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications. The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信