Venkat Roy , Mariappan Parans Paranthaman , Fu Zhao
{"title":"从粘土中提取锂:评估开采对环境的影响","authors":"Venkat Roy , Mariappan Parans Paranthaman , Fu Zhao","doi":"10.1016/j.spc.2024.11.008","DOIUrl":null,"url":null,"abstract":"<div><div>The burgeoning electric vehicle (EV) sector in the United States (US) is expected to drive up the demand for lithium, a critical element for EV batteries. Lithium-rich clays in the Nevada desert emerge as a prospective US-based domestic source. This study employs Life Cycle Assessment (LCA) to examine the environmental aspects of extracting lithium from this source. Among the two evaluated routes, acid leaching was more energy-efficient (35 MJ/kg LCE (Lithium Carbonate Equivalent) than roasting (200 MJ/kg LCE), based on pilot plant data. When compared to conventional methods like spodumene-based extraction, acid leaching shows reductions across almost every category, with notable decreases in high-magnitude impacts like Global Warming (48 %), Freshwater Ecotoxicity (15 %), and Smog (69 %). Water consumption is the only category that increases, rising by 79 %. Insights from this study on upstream impacts of lithium from clay could help inform sourcing decisions downstream, in the battery and EV sector.</div></div>","PeriodicalId":48619,"journal":{"name":"Sustainable Production and Consumption","volume":"52 ","pages":"Pages 324-332"},"PeriodicalIF":10.9000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithium from clay: Assessing the environmental impacts of extraction\",\"authors\":\"Venkat Roy , Mariappan Parans Paranthaman , Fu Zhao\",\"doi\":\"10.1016/j.spc.2024.11.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The burgeoning electric vehicle (EV) sector in the United States (US) is expected to drive up the demand for lithium, a critical element for EV batteries. Lithium-rich clays in the Nevada desert emerge as a prospective US-based domestic source. This study employs Life Cycle Assessment (LCA) to examine the environmental aspects of extracting lithium from this source. Among the two evaluated routes, acid leaching was more energy-efficient (35 MJ/kg LCE (Lithium Carbonate Equivalent) than roasting (200 MJ/kg LCE), based on pilot plant data. When compared to conventional methods like spodumene-based extraction, acid leaching shows reductions across almost every category, with notable decreases in high-magnitude impacts like Global Warming (48 %), Freshwater Ecotoxicity (15 %), and Smog (69 %). Water consumption is the only category that increases, rising by 79 %. Insights from this study on upstream impacts of lithium from clay could help inform sourcing decisions downstream, in the battery and EV sector.</div></div>\",\"PeriodicalId\":48619,\"journal\":{\"name\":\"Sustainable Production and Consumption\",\"volume\":\"52 \",\"pages\":\"Pages 324-332\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Production and Consumption\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352550924003208\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Production and Consumption","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352550924003208","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Lithium from clay: Assessing the environmental impacts of extraction
The burgeoning electric vehicle (EV) sector in the United States (US) is expected to drive up the demand for lithium, a critical element for EV batteries. Lithium-rich clays in the Nevada desert emerge as a prospective US-based domestic source. This study employs Life Cycle Assessment (LCA) to examine the environmental aspects of extracting lithium from this source. Among the two evaluated routes, acid leaching was more energy-efficient (35 MJ/kg LCE (Lithium Carbonate Equivalent) than roasting (200 MJ/kg LCE), based on pilot plant data. When compared to conventional methods like spodumene-based extraction, acid leaching shows reductions across almost every category, with notable decreases in high-magnitude impacts like Global Warming (48 %), Freshwater Ecotoxicity (15 %), and Smog (69 %). Water consumption is the only category that increases, rising by 79 %. Insights from this study on upstream impacts of lithium from clay could help inform sourcing decisions downstream, in the battery and EV sector.
期刊介绍:
Sustainable production and consumption refers to the production and utilization of goods and services in a way that benefits society, is economically viable, and has minimal environmental impact throughout its entire lifespan. Our journal is dedicated to publishing top-notch interdisciplinary research and practical studies in this emerging field. We take a distinctive approach by examining the interplay between technology, consumption patterns, and policy to identify sustainable solutions for both production and consumption systems.