{"title":"用于可穿戴传感器和表皮电极的天然纤维素增强多功能共晶凝胶","authors":"Qianwen Lu , Hengfeng Li , Zhijian Tan","doi":"10.1016/j.carbpol.2024.122939","DOIUrl":null,"url":null,"abstract":"<div><div>Wearable electronics significantly impact health monitoring, clinical care, and human-machine interfaces. Eutectogels, which utilize deep eutectic solvents (DES) address the drawbacks of hydrogels, such as weight loss and poor temperature tolerance, as well as the high costs and toxicities associated with ionogels. Despite these advances, most eutectogels serve only as sensors or epidermal electrodes and rarely fulfill both functions simultaneously. In this study, we present a multifunctional eutectogel designed to function in both ways. Incorporating natural cotton cellulose nanofibers as nanofillers reinforced the tensile strength of the resultant eutectogel by 7.47 times compared to that of the pure eutectogel, reaching 4.93 MPa. This eutectogel exhibited high ionic conductivity (1.22 S m<sup>−1</sup>), strong adhesion (1562.2 kPa to iron), self-healing ability (80.37% strain recovery and 80.53% tensile strength recovery), a broad temperature tolerance (−40 to 80 °C), and antibacterial properties. It demonstrates high sensitivity for the real-time strain detection of human activities and accurately captures electrophysiological signals, enabling the control of a small car. This versatile eutectogel has excellent potential for use in flexible wearable electronics.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122939"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural cellulose reinforced multifunctional eutectogels for wearable sensors and epidermal electrodes\",\"authors\":\"Qianwen Lu , Hengfeng Li , Zhijian Tan\",\"doi\":\"10.1016/j.carbpol.2024.122939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Wearable electronics significantly impact health monitoring, clinical care, and human-machine interfaces. Eutectogels, which utilize deep eutectic solvents (DES) address the drawbacks of hydrogels, such as weight loss and poor temperature tolerance, as well as the high costs and toxicities associated with ionogels. Despite these advances, most eutectogels serve only as sensors or epidermal electrodes and rarely fulfill both functions simultaneously. In this study, we present a multifunctional eutectogel designed to function in both ways. Incorporating natural cotton cellulose nanofibers as nanofillers reinforced the tensile strength of the resultant eutectogel by 7.47 times compared to that of the pure eutectogel, reaching 4.93 MPa. This eutectogel exhibited high ionic conductivity (1.22 S m<sup>−1</sup>), strong adhesion (1562.2 kPa to iron), self-healing ability (80.37% strain recovery and 80.53% tensile strength recovery), a broad temperature tolerance (−40 to 80 °C), and antibacterial properties. It demonstrates high sensitivity for the real-time strain detection of human activities and accurately captures electrophysiological signals, enabling the control of a small car. This versatile eutectogel has excellent potential for use in flexible wearable electronics.</div></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":\"348 \",\"pages\":\"Article 122939\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861724011652\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724011652","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Natural cellulose reinforced multifunctional eutectogels for wearable sensors and epidermal electrodes
Wearable electronics significantly impact health monitoring, clinical care, and human-machine interfaces. Eutectogels, which utilize deep eutectic solvents (DES) address the drawbacks of hydrogels, such as weight loss and poor temperature tolerance, as well as the high costs and toxicities associated with ionogels. Despite these advances, most eutectogels serve only as sensors or epidermal electrodes and rarely fulfill both functions simultaneously. In this study, we present a multifunctional eutectogel designed to function in both ways. Incorporating natural cotton cellulose nanofibers as nanofillers reinforced the tensile strength of the resultant eutectogel by 7.47 times compared to that of the pure eutectogel, reaching 4.93 MPa. This eutectogel exhibited high ionic conductivity (1.22 S m−1), strong adhesion (1562.2 kPa to iron), self-healing ability (80.37% strain recovery and 80.53% tensile strength recovery), a broad temperature tolerance (−40 to 80 °C), and antibacterial properties. It demonstrates high sensitivity for the real-time strain detection of human activities and accurately captures electrophysiological signals, enabling the control of a small car. This versatile eutectogel has excellent potential for use in flexible wearable electronics.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.