Shuqi Jin , Yujie Chen , Kong Ling , Weidong Xu , Wen-Quan Tao
{"title":"利用 VOSET 对微型通道中过冷流沸腾时的气泡上升流冷凝行为进行三维数值研究","authors":"Shuqi Jin , Yujie Chen , Kong Ling , Weidong Xu , Wen-Quan Tao","doi":"10.1016/j.ijmultiphaseflow.2024.105040","DOIUrl":null,"url":null,"abstract":"<div><div>In the subcooled flow boiling process, bubble condensation is an inevitable basic phenomenon. This paper studies the condensation phenomenon of the single, double vertical/horizontal saturated bubbles rising in a three-dimensional mini-rectangular channel based on the interface capture method VOSET (coupled volume-of-fluid and level set method) and the phase transition model. Bubble condensation behaviors are investigated at different initial diameters, inlet velocity distributions, subcooling temperatures, bubble gaps, and arrangement for the two-bubble condensing system especially. The effects of these parametric on bubble motion trajectory, shape evolution, volume variation, and condensation rate are presented. The numerical results indicated that the initial bubble size and liquid subcooling play an important role in influencing the shape and volume variation of condensing bubble behaviors significantly, while the inlet velocity distribution only affects bubble motion trajectory. Furthermore, the interaction and coalescence between the bubbles will affect the bubble behaviors and the condensation rate. Finally, the condensation heat transfer coefficients at the bubble surfaces for different cases simulated in this paper are presented, seemingly first in the literature.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"182 ","pages":"Article 105040"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D numerical investigation of bubble upflow condensation behaviors during subcooled flow boiling in mini-channel with VOSET\",\"authors\":\"Shuqi Jin , Yujie Chen , Kong Ling , Weidong Xu , Wen-Quan Tao\",\"doi\":\"10.1016/j.ijmultiphaseflow.2024.105040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the subcooled flow boiling process, bubble condensation is an inevitable basic phenomenon. This paper studies the condensation phenomenon of the single, double vertical/horizontal saturated bubbles rising in a three-dimensional mini-rectangular channel based on the interface capture method VOSET (coupled volume-of-fluid and level set method) and the phase transition model. Bubble condensation behaviors are investigated at different initial diameters, inlet velocity distributions, subcooling temperatures, bubble gaps, and arrangement for the two-bubble condensing system especially. The effects of these parametric on bubble motion trajectory, shape evolution, volume variation, and condensation rate are presented. The numerical results indicated that the initial bubble size and liquid subcooling play an important role in influencing the shape and volume variation of condensing bubble behaviors significantly, while the inlet velocity distribution only affects bubble motion trajectory. Furthermore, the interaction and coalescence between the bubbles will affect the bubble behaviors and the condensation rate. Finally, the condensation heat transfer coefficients at the bubble surfaces for different cases simulated in this paper are presented, seemingly first in the literature.</div></div>\",\"PeriodicalId\":339,\"journal\":{\"name\":\"International Journal of Multiphase Flow\",\"volume\":\"182 \",\"pages\":\"Article 105040\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multiphase Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301932224003173\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932224003173","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
3D numerical investigation of bubble upflow condensation behaviors during subcooled flow boiling in mini-channel with VOSET
In the subcooled flow boiling process, bubble condensation is an inevitable basic phenomenon. This paper studies the condensation phenomenon of the single, double vertical/horizontal saturated bubbles rising in a three-dimensional mini-rectangular channel based on the interface capture method VOSET (coupled volume-of-fluid and level set method) and the phase transition model. Bubble condensation behaviors are investigated at different initial diameters, inlet velocity distributions, subcooling temperatures, bubble gaps, and arrangement for the two-bubble condensing system especially. The effects of these parametric on bubble motion trajectory, shape evolution, volume variation, and condensation rate are presented. The numerical results indicated that the initial bubble size and liquid subcooling play an important role in influencing the shape and volume variation of condensing bubble behaviors significantly, while the inlet velocity distribution only affects bubble motion trajectory. Furthermore, the interaction and coalescence between the bubbles will affect the bubble behaviors and the condensation rate. Finally, the condensation heat transfer coefficients at the bubble surfaces for different cases simulated in this paper are presented, seemingly first in the literature.
期刊介绍:
The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others.
The journal publishes full papers, brief communications and conference announcements.