检测和计算单位盘图中的小模式的算法和图灵内核

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Jesper Nederlof, Krisztina Szilágyi
{"title":"检测和计算单位盘图中的小模式的算法和图灵内核","authors":"Jesper Nederlof,&nbsp;Krisztina Szilágyi","doi":"10.1016/j.jcss.2024.103600","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we investigate the parameterized complexity of counting and detecting small patterns in unit disk graphs: Given an <em>n</em>-vertex unit disk graph <em>G</em> with an embedding of ply <em>p</em> (i.e. <em>G</em> is an intersection graph of closed unit disks, and each point is contained in at most <em>p</em> disks) and a <em>k</em>-vertex unit disk graph <em>P</em>, count the number of (induced) copies of <em>P</em> in <em>G</em>. For general patterns <em>P</em>, we give an <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>p</mi><mi>k</mi><mo>/</mo><mi>log</mi><mo>⁡</mo><mi>k</mi><mo>)</mo></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span> time algorithm for counting pattern occurrences. We show this is tight, even for ply <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span>: any <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>o</mi><mo>(</mo><mi>n</mi><mo>/</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span> time algorithm violates the Exponential Time Hypothesis (ETH). Our approach combines tools developed for planar subgraph isomorphism such as ‘efficient inclusion-exclusion’ from Nederlof (2020) <span><span>[15]</span></span>, and ‘isomorphisms checks’ from Bodlaender et al. (2016) <span><span>[5]</span></span> with a different separator hierarchy and a new bound on the number of non-isomorphic separations tailored for unit disk graphs.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"148 ","pages":"Article 103600"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithms and Turing kernels for detecting and counting small patterns in unit disk graphs\",\"authors\":\"Jesper Nederlof,&nbsp;Krisztina Szilágyi\",\"doi\":\"10.1016/j.jcss.2024.103600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we investigate the parameterized complexity of counting and detecting small patterns in unit disk graphs: Given an <em>n</em>-vertex unit disk graph <em>G</em> with an embedding of ply <em>p</em> (i.e. <em>G</em> is an intersection graph of closed unit disks, and each point is contained in at most <em>p</em> disks) and a <em>k</em>-vertex unit disk graph <em>P</em>, count the number of (induced) copies of <em>P</em> in <em>G</em>. For general patterns <em>P</em>, we give an <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>p</mi><mi>k</mi><mo>/</mo><mi>log</mi><mo>⁡</mo><mi>k</mi><mo>)</mo></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span> time algorithm for counting pattern occurrences. We show this is tight, even for ply <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span>: any <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>o</mi><mo>(</mo><mi>n</mi><mo>/</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span> time algorithm violates the Exponential Time Hypothesis (ETH). Our approach combines tools developed for planar subgraph isomorphism such as ‘efficient inclusion-exclusion’ from Nederlof (2020) <span><span>[15]</span></span>, and ‘isomorphisms checks’ from Bodlaender et al. (2016) <span><span>[5]</span></span> with a different separator hierarchy and a new bound on the number of non-isomorphic separations tailored for unit disk graphs.</div></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"148 \",\"pages\":\"Article 103600\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000024000953\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000024000953","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了计算和检测单位盘图中小图案的参数化复杂性:给定一个具有 ply p 嵌入的 n 个顶点单位盘图 G(即 G 是封闭单位盘的交集图,且每个点最多包含在 p 个盘中)和一个 k 个顶点单位盘图 P,计算 P 在 G 中的(诱导)副本数。对于一般图案 P,我们给出了一个 2O(pk/logk)nO(1)时间的算法来计算图案出现次数。我们证明了这一算法的严密性,即使对于 ply p=2 也是如此:任何 2o(n/logn)nO(1)时间算法都违反了指数时间假说 (ETH)。我们的方法结合了为平面子图同构开发的工具,如 Nederlof (2020) [15] 的 "高效包容-排除 "和 Bodlaender 等人 (2016) [5] 的 "同构检查",以及不同的分离器层次结构和为单位盘图量身定制的非同构分离数量新约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithms and Turing kernels for detecting and counting small patterns in unit disk graphs
In this paper we investigate the parameterized complexity of counting and detecting small patterns in unit disk graphs: Given an n-vertex unit disk graph G with an embedding of ply p (i.e. G is an intersection graph of closed unit disks, and each point is contained in at most p disks) and a k-vertex unit disk graph P, count the number of (induced) copies of P in G. For general patterns P, we give an 2O(pk/logk)nO(1) time algorithm for counting pattern occurrences. We show this is tight, even for ply p=2: any 2o(n/logn)nO(1) time algorithm violates the Exponential Time Hypothesis (ETH). Our approach combines tools developed for planar subgraph isomorphism such as ‘efficient inclusion-exclusion’ from Nederlof (2020) [15], and ‘isomorphisms checks’ from Bodlaender et al. (2016) [5] with a different separator hierarchy and a new bound on the number of non-isomorphic separations tailored for unit disk graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信