{"title":"基于微分神经网络的自适应平均输出反馈控制设计,用于癌症免疫疗法的剂量确定","authors":"N. Aguilar-Blas , I. Chairez , A. Cabrera","doi":"10.1016/j.asoc.2024.112368","DOIUrl":null,"url":null,"abstract":"<div><div>Immunotherapy involves natural and synthetic substances to stimulate the body’s immune response. This treatment approach is practical not only for addressing immune deficiencies but also for combating malignancies. This paper describes a non-parametric approximated adaptive control process for managing cancer dynamics under immunotherapy treatment, utilizing a combination of a differential neural network (DNN) observer and nonlinear control techniques such as sliding mode and local optimal strategies. By employing the state estimation and control methods, close tracking between the estimated states provided by the neural network and the cancer model dynamics is possible. Internal model reconstruction and an observer provided by a variable structure model are essential for controlling unknown plants. Furthermore, the control design has successfully reduced tumor cells despite uncertainties and external perturbations affecting cancer dynamics. This robustness enhances the reliability of the proposed design. A virtual real-time scheme was developed to demonstrate this controller’s feasibility in real clinical scenarios. In this scheme, a simulated patient generates variables of immunotherapy dynamics as electrical signals, which are then analyzed by a real-time project.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"167 ","pages":"Article 112368"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential neural network based adaptive average output feedback control design for dosage determination on cancer based immunotherapy treatment\",\"authors\":\"N. Aguilar-Blas , I. Chairez , A. Cabrera\",\"doi\":\"10.1016/j.asoc.2024.112368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Immunotherapy involves natural and synthetic substances to stimulate the body’s immune response. This treatment approach is practical not only for addressing immune deficiencies but also for combating malignancies. This paper describes a non-parametric approximated adaptive control process for managing cancer dynamics under immunotherapy treatment, utilizing a combination of a differential neural network (DNN) observer and nonlinear control techniques such as sliding mode and local optimal strategies. By employing the state estimation and control methods, close tracking between the estimated states provided by the neural network and the cancer model dynamics is possible. Internal model reconstruction and an observer provided by a variable structure model are essential for controlling unknown plants. Furthermore, the control design has successfully reduced tumor cells despite uncertainties and external perturbations affecting cancer dynamics. This robustness enhances the reliability of the proposed design. A virtual real-time scheme was developed to demonstrate this controller’s feasibility in real clinical scenarios. In this scheme, a simulated patient generates variables of immunotherapy dynamics as electrical signals, which are then analyzed by a real-time project.</div></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":\"167 \",\"pages\":\"Article 112368\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494624011426\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494624011426","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Differential neural network based adaptive average output feedback control design for dosage determination on cancer based immunotherapy treatment
Immunotherapy involves natural and synthetic substances to stimulate the body’s immune response. This treatment approach is practical not only for addressing immune deficiencies but also for combating malignancies. This paper describes a non-parametric approximated adaptive control process for managing cancer dynamics under immunotherapy treatment, utilizing a combination of a differential neural network (DNN) observer and nonlinear control techniques such as sliding mode and local optimal strategies. By employing the state estimation and control methods, close tracking between the estimated states provided by the neural network and the cancer model dynamics is possible. Internal model reconstruction and an observer provided by a variable structure model are essential for controlling unknown plants. Furthermore, the control design has successfully reduced tumor cells despite uncertainties and external perturbations affecting cancer dynamics. This robustness enhances the reliability of the proposed design. A virtual real-time scheme was developed to demonstrate this controller’s feasibility in real clinical scenarios. In this scheme, a simulated patient generates variables of immunotherapy dynamics as electrical signals, which are then analyzed by a real-time project.
期刊介绍:
Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities.
Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.