通过四维格拉斯曼的劳蒙准局部模型

IF 0.7 2区 数学 Q2 MATHEMATICS
Evgeny Feigin , Martina Lanini , Alexander Pütz
{"title":"通过四维格拉斯曼的劳蒙准局部模型","authors":"Evgeny Feigin ,&nbsp;Martina Lanini ,&nbsp;Alexander Pütz","doi":"10.1016/j.jpaa.2024.107837","DOIUrl":null,"url":null,"abstract":"<div><div>Local models of Shimura varieties in type A can be realized inside products of Grassmannians via certain linear algebraic conditions. Laumon suggested a generalization which can be identified with a family over a line whose general fibers are quiver Grassmannians for the loop quiver and the special fiber is a certain quiver Grassmannian for the cyclic quiver. The whole family sits inside the Gaitsgory central degeneration of the affine Grassmannians. We study the properties of the special fibers of the (complex) Laumon local models for arbitrary parahoric subgroups in type A using the machinery of quiver representations. We describe the irreducible components and the natural strata with respect to the group action for the quiver Grassmannians in question. We also construct a cellular decomposition and provide an explicit description for the corresponding poset of cells. Finally, we study the properties of the desingularizations of the irreducible components and show that the desingularization construction is compatible with the natural projections between the parahoric subgroups.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 1","pages":"Article 107837"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laumon parahoric local models via quiver Grassmannians\",\"authors\":\"Evgeny Feigin ,&nbsp;Martina Lanini ,&nbsp;Alexander Pütz\",\"doi\":\"10.1016/j.jpaa.2024.107837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Local models of Shimura varieties in type A can be realized inside products of Grassmannians via certain linear algebraic conditions. Laumon suggested a generalization which can be identified with a family over a line whose general fibers are quiver Grassmannians for the loop quiver and the special fiber is a certain quiver Grassmannian for the cyclic quiver. The whole family sits inside the Gaitsgory central degeneration of the affine Grassmannians. We study the properties of the special fibers of the (complex) Laumon local models for arbitrary parahoric subgroups in type A using the machinery of quiver representations. We describe the irreducible components and the natural strata with respect to the group action for the quiver Grassmannians in question. We also construct a cellular decomposition and provide an explicit description for the corresponding poset of cells. Finally, we study the properties of the desingularizations of the irreducible components and show that the desingularization construction is compatible with the natural projections between the parahoric subgroups.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 1\",\"pages\":\"Article 107837\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924002342\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002342","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

通过某些线性代数条件,可以在格拉斯曼的乘积内实现 A 型志摩拉(Shimura)变体的局部模型。劳蒙(Laumon)提出了一种概括,它可以与线上的一个族相鉴别,这个族的一般纤维是循环簇的簇格拉斯曼,特殊纤维是循环簇的某个簇格拉斯曼。整个族位于仿射格拉斯曼的盖茨高里中心退化内。我们利用簇表示的机制研究了 A 型任意准子群的(复)劳蒙局部模型特殊纤维的性质。我们描述了有关簇格拉斯曼的群作用的不可还原成分和自然层。我们还构建了单元分解,并对相应的单元集合进行了明确描述。最后,我们研究了不可还原成分的去晶化性质,并证明了去晶化构造与准子群之间的自然投影是兼容的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Laumon parahoric local models via quiver Grassmannians
Local models of Shimura varieties in type A can be realized inside products of Grassmannians via certain linear algebraic conditions. Laumon suggested a generalization which can be identified with a family over a line whose general fibers are quiver Grassmannians for the loop quiver and the special fiber is a certain quiver Grassmannian for the cyclic quiver. The whole family sits inside the Gaitsgory central degeneration of the affine Grassmannians. We study the properties of the special fibers of the (complex) Laumon local models for arbitrary parahoric subgroups in type A using the machinery of quiver representations. We describe the irreducible components and the natural strata with respect to the group action for the quiver Grassmannians in question. We also construct a cellular decomposition and provide an explicit description for the corresponding poset of cells. Finally, we study the properties of the desingularizations of the irreducible components and show that the desingularization construction is compatible with the natural projections between the parahoric subgroups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信