基于密集匹配的接缝估计,用于视差容忍图像拼接

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhihao Zhang , Jie He , Mouquan Shen , Xianqiang Yang
{"title":"基于密集匹配的接缝估计,用于视差容忍图像拼接","authors":"Zhihao Zhang ,&nbsp;Jie He ,&nbsp;Mouquan Shen ,&nbsp;Xianqiang Yang","doi":"10.1016/j.cviu.2024.104219","DOIUrl":null,"url":null,"abstract":"<div><div>Image stitching with large parallax poses a significant challenge in the field of computer vision. Existing seam-based approaches attempt to address parallax artifacts by stitching images along seams. However, issues such as object mismatches, disappearances, and duplications still arise occasionally, primarily due to inaccurate alignment of dense pixels or inappropriate seam estimation methods. In this paper, we propose a robust seam-based parallax-tolerant image stitching method that leverages dense flow estimation from state-of-the-art approaches. Firstly, we develop a seam estimation method that does not require pre-estimation of image warping model. Instead, it directly estimates the seam by measuring the local smoothness of the optical flow field and incorporating a penalty term for duplications. Subsequently, we design an iterative algorithm that utilizes the location of estimated seam to solve a spatial smooth warping model and eliminate outlier corresponding pairs. By employing this approach, we effectively address the intertwined challenges of estimating the warping model and seam. Experiment on real-world images shows that our proposed method achieves superior local alignment accuracy near the stitching seam and outperforms other state-of-the-art techniques on visual stitching result. Code is available at <span><span>https://github.com/zhihao0512/dense-matching-image-stitching</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"250 ","pages":"Article 104219"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seam estimation based on dense matching for parallax-tolerant image stitching\",\"authors\":\"Zhihao Zhang ,&nbsp;Jie He ,&nbsp;Mouquan Shen ,&nbsp;Xianqiang Yang\",\"doi\":\"10.1016/j.cviu.2024.104219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Image stitching with large parallax poses a significant challenge in the field of computer vision. Existing seam-based approaches attempt to address parallax artifacts by stitching images along seams. However, issues such as object mismatches, disappearances, and duplications still arise occasionally, primarily due to inaccurate alignment of dense pixels or inappropriate seam estimation methods. In this paper, we propose a robust seam-based parallax-tolerant image stitching method that leverages dense flow estimation from state-of-the-art approaches. Firstly, we develop a seam estimation method that does not require pre-estimation of image warping model. Instead, it directly estimates the seam by measuring the local smoothness of the optical flow field and incorporating a penalty term for duplications. Subsequently, we design an iterative algorithm that utilizes the location of estimated seam to solve a spatial smooth warping model and eliminate outlier corresponding pairs. By employing this approach, we effectively address the intertwined challenges of estimating the warping model and seam. Experiment on real-world images shows that our proposed method achieves superior local alignment accuracy near the stitching seam and outperforms other state-of-the-art techniques on visual stitching result. Code is available at <span><span>https://github.com/zhihao0512/dense-matching-image-stitching</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":\"250 \",\"pages\":\"Article 104219\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S107731422400300X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S107731422400300X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

大视差图像拼接是计算机视觉领域的一项重大挑战。现有的基于接缝的方法试图通过沿接缝拼接图像来解决视差伪影问题。然而,偶尔仍会出现物体不匹配、消失和重复等问题,这主要是由于密集像素对齐不准确或接缝估计方法不当造成的。在本文中,我们提出了一种基于接缝的鲁棒视差容错图像拼接方法,该方法利用了最先进方法中的密集流估计。首先,我们开发了一种无需预先估计图像扭曲模型的接缝估计方法。相反,该方法通过测量光流场的局部平滑度,并加入对重复的惩罚项,直接估算接缝。随后,我们设计了一种迭代算法,利用估算出的接缝位置来求解空间平滑翘曲模型,并消除离群的对应对。通过采用这种方法,我们有效地解决了估算翘曲模型和接缝这两个相互交织的难题。在真实图像上的实验表明,我们提出的方法在拼接缝附近实现了卓越的局部对齐精度,在视觉拼接效果上优于其他最先进的技术。代码见 https://github.com/zhihao0512/dense-matching-image-stitching。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seam estimation based on dense matching for parallax-tolerant image stitching
Image stitching with large parallax poses a significant challenge in the field of computer vision. Existing seam-based approaches attempt to address parallax artifacts by stitching images along seams. However, issues such as object mismatches, disappearances, and duplications still arise occasionally, primarily due to inaccurate alignment of dense pixels or inappropriate seam estimation methods. In this paper, we propose a robust seam-based parallax-tolerant image stitching method that leverages dense flow estimation from state-of-the-art approaches. Firstly, we develop a seam estimation method that does not require pre-estimation of image warping model. Instead, it directly estimates the seam by measuring the local smoothness of the optical flow field and incorporating a penalty term for duplications. Subsequently, we design an iterative algorithm that utilizes the location of estimated seam to solve a spatial smooth warping model and eliminate outlier corresponding pairs. By employing this approach, we effectively address the intertwined challenges of estimating the warping model and seam. Experiment on real-world images shows that our proposed method achieves superior local alignment accuracy near the stitching seam and outperforms other state-of-the-art techniques on visual stitching result. Code is available at https://github.com/zhihao0512/dense-matching-image-stitching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信