基于生成式对抗网络的双阶段语义信息图像超分辨率

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shailza Sharma , Abhinav Dhall , Shikhar Johri , Vinay Kumar , Vivek Singh
{"title":"基于生成式对抗网络的双阶段语义信息图像超分辨率","authors":"Shailza Sharma ,&nbsp;Abhinav Dhall ,&nbsp;Shikhar Johri ,&nbsp;Vinay Kumar ,&nbsp;Vivek Singh","doi":"10.1016/j.cviu.2024.104226","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning has revolutionized image super-resolution, yet challenges persist in preserving intricate details and avoiding overly smooth reconstructions. In this work, we introduce a novel architecture, the Residue and Semantic Feature-based Dual Subpixel Generative Adversarial Network (RSF-DSGAN), which emphasizes the critical role of semantic information in addressing these issues. The proposed generator architecture is designed with two sequential stages: the Premier Residual Stage and the Deuxième Residual Stage. These stages are concatenated to form a dual-stage upsampling process, substantially augmenting the model’s capacity for feature learning. A central innovation of our approach is the integration of semantic information directly into the generator. Specifically, feature maps derived from a pre-trained network are fused with the primary feature maps of the first stage, enriching the generator with high-level contextual cues. This semantic infusion enhances the fidelity and sharpness of reconstructed images, particularly in preserving object details and textures. Inter- and intra-residual connections are employed within these stages to maintain high-frequency details and fine textures. Additionally, spectral normalization is introduced in the discriminator to stabilize training. Comprehensive evaluations, including visual perception and mean opinion scores, demonstrate that RSF-DSGAN, with its emphasis on semantic information, outperforms current state-of-the-art super-resolution methods.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"250 ","pages":"Article 104226"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual stage semantic information based generative adversarial network for image super-resolution\",\"authors\":\"Shailza Sharma ,&nbsp;Abhinav Dhall ,&nbsp;Shikhar Johri ,&nbsp;Vinay Kumar ,&nbsp;Vivek Singh\",\"doi\":\"10.1016/j.cviu.2024.104226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep learning has revolutionized image super-resolution, yet challenges persist in preserving intricate details and avoiding overly smooth reconstructions. In this work, we introduce a novel architecture, the Residue and Semantic Feature-based Dual Subpixel Generative Adversarial Network (RSF-DSGAN), which emphasizes the critical role of semantic information in addressing these issues. The proposed generator architecture is designed with two sequential stages: the Premier Residual Stage and the Deuxième Residual Stage. These stages are concatenated to form a dual-stage upsampling process, substantially augmenting the model’s capacity for feature learning. A central innovation of our approach is the integration of semantic information directly into the generator. Specifically, feature maps derived from a pre-trained network are fused with the primary feature maps of the first stage, enriching the generator with high-level contextual cues. This semantic infusion enhances the fidelity and sharpness of reconstructed images, particularly in preserving object details and textures. Inter- and intra-residual connections are employed within these stages to maintain high-frequency details and fine textures. Additionally, spectral normalization is introduced in the discriminator to stabilize training. Comprehensive evaluations, including visual perception and mean opinion scores, demonstrate that RSF-DSGAN, with its emphasis on semantic information, outperforms current state-of-the-art super-resolution methods.</div></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":\"250 \",\"pages\":\"Article 104226\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077314224003072\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224003072","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

深度学习为图像超分辨率带来了革命性的变化,但在保留复杂细节和避免过于平滑的重建方面仍然存在挑战。在这项工作中,我们介绍了一种新颖的架构--基于残差和语义特征的双子像素生成对抗网络(RSF-DSGAN),它强调了语义信息在解决这些问题中的关键作用。拟议的生成器架构设计有两个连续的阶段:第一残差阶段和第二残差阶段。这两个阶段连接起来形成一个双阶段的上采样过程,大大增强了模型的特征学习能力。我们方法的核心创新点是将语义信息直接整合到生成器中。具体来说,从预训练网络中提取的特征图与第一阶段的主要特征图融合在一起,通过高级上下文线索丰富生成器。这种语义注入可提高重建图像的保真度和清晰度,尤其是在保留物体细节和纹理方面。在这些阶段中,采用了残基间和残基内的连接,以保持高频细节和精细纹理。此外,还在判别器中引入了光谱归一化以稳定训练。包括视觉感知和平均意见分数在内的综合评估结果表明,RSF-DSGAN 重视语义信息,其效果优于目前最先进的超分辨率方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual stage semantic information based generative adversarial network for image super-resolution
Deep learning has revolutionized image super-resolution, yet challenges persist in preserving intricate details and avoiding overly smooth reconstructions. In this work, we introduce a novel architecture, the Residue and Semantic Feature-based Dual Subpixel Generative Adversarial Network (RSF-DSGAN), which emphasizes the critical role of semantic information in addressing these issues. The proposed generator architecture is designed with two sequential stages: the Premier Residual Stage and the Deuxième Residual Stage. These stages are concatenated to form a dual-stage upsampling process, substantially augmenting the model’s capacity for feature learning. A central innovation of our approach is the integration of semantic information directly into the generator. Specifically, feature maps derived from a pre-trained network are fused with the primary feature maps of the first stage, enriching the generator with high-level contextual cues. This semantic infusion enhances the fidelity and sharpness of reconstructed images, particularly in preserving object details and textures. Inter- and intra-residual connections are employed within these stages to maintain high-frequency details and fine textures. Additionally, spectral normalization is introduced in the discriminator to stabilize training. Comprehensive evaluations, including visual perception and mean opinion scores, demonstrate that RSF-DSGAN, with its emphasis on semantic information, outperforms current state-of-the-art super-resolution methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信