Yulin Wang , Lixia Qi , Fei Ma , Hua Li , Shuai Ma , Cheng Wang , Wei He , Shixue Wang
{"title":"优化聚合物电解质膜燃料电池的高利用梯度铂分布催化剂层","authors":"Yulin Wang , Lixia Qi , Fei Ma , Hua Li , Shuai Ma , Cheng Wang , Wei He , Shixue Wang","doi":"10.1016/j.apenergy.2024.124874","DOIUrl":null,"url":null,"abstract":"<div><div>The optimal design of platinum (Pt) particles distribution within catalyst layer (CL) favors their utilization and the polymer electrolyte membrane fuel cell (PEMFC) performance. A stochastic algorithm is employed in this study to reconstruct the 2D microstructure of the CL by considering the random distribution of carbon carriers and ionomers and a novel double-gradient distribution of Pt particles. The double-gradient Pt-distributed CLs feature double dividend regions of equal and unequal lengths. Subsequently, the reaction transport process within these double-gradient CLs is numerically investigated by a lattice Boltzmann (LB) method. The numerical results indicate that the reaction transport process within the double-gradient CLs differs greatly from that within conventional CLs. With the total Pt particle number constant, increasing the Pt particle number within the inlet region of the CL initially improves and consequently degrades the oxygen reduce reaction (ORR), whereas a reverse design always leads to a reduced ORR. The optimal CL gradient for double dividend regions of equal length occurs when the ratio of Pt particle number in the inlet region to that in the outlet region (Pt<sub>in</sub>:Pt<sub>out</sub>) is 5:1, which leads to a 28.85 % increase in the ORR rate compared with that of the conventional CL. Moreover, for the gradient CL with double dividend regions of unequal length, we find that the optimal ratios of <em>L</em><sub>in</sub>:<em>L</em><sub>out</sub> and Pt<sub>in</sub>:Pt<sub>out</sub> are 1:4 and 6:1, respectively; this gradient CL yields a 58.65 % increase in the ORR compared with that of the conventional CL.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"378 ","pages":"Article 124874"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of a catalyst layer with a high-utilization gradient Pt distribution for polymer electrolyte membrane fuel cells\",\"authors\":\"Yulin Wang , Lixia Qi , Fei Ma , Hua Li , Shuai Ma , Cheng Wang , Wei He , Shixue Wang\",\"doi\":\"10.1016/j.apenergy.2024.124874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The optimal design of platinum (Pt) particles distribution within catalyst layer (CL) favors their utilization and the polymer electrolyte membrane fuel cell (PEMFC) performance. A stochastic algorithm is employed in this study to reconstruct the 2D microstructure of the CL by considering the random distribution of carbon carriers and ionomers and a novel double-gradient distribution of Pt particles. The double-gradient Pt-distributed CLs feature double dividend regions of equal and unequal lengths. Subsequently, the reaction transport process within these double-gradient CLs is numerically investigated by a lattice Boltzmann (LB) method. The numerical results indicate that the reaction transport process within the double-gradient CLs differs greatly from that within conventional CLs. With the total Pt particle number constant, increasing the Pt particle number within the inlet region of the CL initially improves and consequently degrades the oxygen reduce reaction (ORR), whereas a reverse design always leads to a reduced ORR. The optimal CL gradient for double dividend regions of equal length occurs when the ratio of Pt particle number in the inlet region to that in the outlet region (Pt<sub>in</sub>:Pt<sub>out</sub>) is 5:1, which leads to a 28.85 % increase in the ORR rate compared with that of the conventional CL. Moreover, for the gradient CL with double dividend regions of unequal length, we find that the optimal ratios of <em>L</em><sub>in</sub>:<em>L</em><sub>out</sub> and Pt<sub>in</sub>:Pt<sub>out</sub> are 1:4 and 6:1, respectively; this gradient CL yields a 58.65 % increase in the ORR compared with that of the conventional CL.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"378 \",\"pages\":\"Article 124874\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261924022578\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924022578","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Optimization of a catalyst layer with a high-utilization gradient Pt distribution for polymer electrolyte membrane fuel cells
The optimal design of platinum (Pt) particles distribution within catalyst layer (CL) favors their utilization and the polymer electrolyte membrane fuel cell (PEMFC) performance. A stochastic algorithm is employed in this study to reconstruct the 2D microstructure of the CL by considering the random distribution of carbon carriers and ionomers and a novel double-gradient distribution of Pt particles. The double-gradient Pt-distributed CLs feature double dividend regions of equal and unequal lengths. Subsequently, the reaction transport process within these double-gradient CLs is numerically investigated by a lattice Boltzmann (LB) method. The numerical results indicate that the reaction transport process within the double-gradient CLs differs greatly from that within conventional CLs. With the total Pt particle number constant, increasing the Pt particle number within the inlet region of the CL initially improves and consequently degrades the oxygen reduce reaction (ORR), whereas a reverse design always leads to a reduced ORR. The optimal CL gradient for double dividend regions of equal length occurs when the ratio of Pt particle number in the inlet region to that in the outlet region (Ptin:Ptout) is 5:1, which leads to a 28.85 % increase in the ORR rate compared with that of the conventional CL. Moreover, for the gradient CL with double dividend regions of unequal length, we find that the optimal ratios of Lin:Lout and Ptin:Ptout are 1:4 and 6:1, respectively; this gradient CL yields a 58.65 % increase in the ORR compared with that of the conventional CL.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.