Jinfu Zheng , Changpeng Han , Songtao Hu , Qixiang Qin , Jinda Wang , Hui Zhu , Shimin Liang
{"title":"地表水源热泵毛细管箱式换热器和螺旋盘管换热器的热性能和水力性能对比实验研究","authors":"Jinfu Zheng , Changpeng Han , Songtao Hu , Qixiang Qin , Jinda Wang , Hui Zhu , Shimin Liang","doi":"10.1016/j.icheatmasstransfer.2024.108331","DOIUrl":null,"url":null,"abstract":"<div><div>The thermal and hydraulic performances of front-end heat exchangers significantly influence the energy efficiency of surface water-source heat pumps. To evaluate the performance of a capillary box heat exchanger (CBHE), a comparative study between the CBHE and a conventional helical coil heat exchanger (HCHE) was conducted under different tube velocities, heat transfer media, and temperatures. The comparison considered not only traditional metrics, such as the heat transfer coefficient, heat transfer efficiency, and pressure drop, but also the volume heat transfer coefficient and two thermal-hydraulic comprehensive performance parameters: the modified Colburn–Fanning factor ratio (<em>JF</em><sub><em>K</em></sub>) with larger-the-better characteristics and the electricity consumption to extracted or rejected heat quantity ratio (<em>EHR</em>) with smaller-the-better characteristics. The results indicated that the heat transfer coefficient, heat transfer efficiency, and volume heat transfer coefficient of the CBHE were 10.1 W/(m<sup>2.</sup>°C)–25.58 W/(m<sup>2.</sup>°C), 34 %–45 %, and 1140 W/(m<sup>3.</sup>°C)–1416 W/(m<sup>3.</sup>°C) larger than those of the HCHE, whereas its total pressure drop was only 15 %–21 % of that of the HCHE. Additionally, the <em>JF</em><sub><em>K</em></sub> and <em>EHR</em> of the CBHE were approximately three times and 11 %–16 %, respectively, those of the HCHE. This study serves as a reference for selecting and designing front-end heat exchangers.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"159 ","pages":"Article 108331"},"PeriodicalIF":6.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative experimental study on the thermal and hydraulic performances of capillary box heat exchanger and helical coil heat exchanger for surface water-source heat pump\",\"authors\":\"Jinfu Zheng , Changpeng Han , Songtao Hu , Qixiang Qin , Jinda Wang , Hui Zhu , Shimin Liang\",\"doi\":\"10.1016/j.icheatmasstransfer.2024.108331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The thermal and hydraulic performances of front-end heat exchangers significantly influence the energy efficiency of surface water-source heat pumps. To evaluate the performance of a capillary box heat exchanger (CBHE), a comparative study between the CBHE and a conventional helical coil heat exchanger (HCHE) was conducted under different tube velocities, heat transfer media, and temperatures. The comparison considered not only traditional metrics, such as the heat transfer coefficient, heat transfer efficiency, and pressure drop, but also the volume heat transfer coefficient and two thermal-hydraulic comprehensive performance parameters: the modified Colburn–Fanning factor ratio (<em>JF</em><sub><em>K</em></sub>) with larger-the-better characteristics and the electricity consumption to extracted or rejected heat quantity ratio (<em>EHR</em>) with smaller-the-better characteristics. The results indicated that the heat transfer coefficient, heat transfer efficiency, and volume heat transfer coefficient of the CBHE were 10.1 W/(m<sup>2.</sup>°C)–25.58 W/(m<sup>2.</sup>°C), 34 %–45 %, and 1140 W/(m<sup>3.</sup>°C)–1416 W/(m<sup>3.</sup>°C) larger than those of the HCHE, whereas its total pressure drop was only 15 %–21 % of that of the HCHE. Additionally, the <em>JF</em><sub><em>K</em></sub> and <em>EHR</em> of the CBHE were approximately three times and 11 %–16 %, respectively, those of the HCHE. This study serves as a reference for selecting and designing front-end heat exchangers.</div></div>\",\"PeriodicalId\":332,\"journal\":{\"name\":\"International Communications in Heat and Mass Transfer\",\"volume\":\"159 \",\"pages\":\"Article 108331\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Communications in Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0735193324010935\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193324010935","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Comparative experimental study on the thermal and hydraulic performances of capillary box heat exchanger and helical coil heat exchanger for surface water-source heat pump
The thermal and hydraulic performances of front-end heat exchangers significantly influence the energy efficiency of surface water-source heat pumps. To evaluate the performance of a capillary box heat exchanger (CBHE), a comparative study between the CBHE and a conventional helical coil heat exchanger (HCHE) was conducted under different tube velocities, heat transfer media, and temperatures. The comparison considered not only traditional metrics, such as the heat transfer coefficient, heat transfer efficiency, and pressure drop, but also the volume heat transfer coefficient and two thermal-hydraulic comprehensive performance parameters: the modified Colburn–Fanning factor ratio (JFK) with larger-the-better characteristics and the electricity consumption to extracted or rejected heat quantity ratio (EHR) with smaller-the-better characteristics. The results indicated that the heat transfer coefficient, heat transfer efficiency, and volume heat transfer coefficient of the CBHE were 10.1 W/(m2.°C)–25.58 W/(m2.°C), 34 %–45 %, and 1140 W/(m3.°C)–1416 W/(m3.°C) larger than those of the HCHE, whereas its total pressure drop was only 15 %–21 % of that of the HCHE. Additionally, the JFK and EHR of the CBHE were approximately three times and 11 %–16 %, respectively, those of the HCHE. This study serves as a reference for selecting and designing front-end heat exchangers.
期刊介绍:
International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.