利用 Runge-Kutta 2 和 4 优化线性/非线性 Volterra 型积分微分方程,提高时间效率

IF 2.7 Q2 MULTIDISCIPLINARY SCIENCES
Martin Ndi Azese
{"title":"利用 Runge-Kutta 2 和 4 优化线性/非线性 Volterra 型积分微分方程,提高时间效率","authors":"Martin Ndi Azese","doi":"10.1016/j.sciaf.2024.e02443","DOIUrl":null,"url":null,"abstract":"<div><div>A novel non-adaptative time-efficient (TE) numerical scheme based on the Runge–Kutta (RK) algorithm is devised for solving linear and non-linear Volterra-type integro-differential equations (VTIDE) characterized by a specific class of convolution memory, <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>κ</mi><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mi>s</mi><mo>)</mo></mrow></mrow></msup></mrow></math></span>, where <span><math><mrow><mi>a</mi><mo>,</mo><mspace></mspace><mi>κ</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. This kernel is commonly encountered in viscoelasticity and various applied sciences. The integration governing the convolution term is elegantly reformulated, allowing for the implementation of a backstage integration within the RK scheme’s main body. This approach circumvents the need for full integration of the convolution during each iteration, thereby significantly reducing computational time to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> for <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> iterations. Furthermore, this formulation facilitates the adoption of an implicit scheme by selecting appropriate methods and data stencils. We demonstrate this concept using an implicit trapezoidal method applied to a linear VTIDE, accompanied by stability analyses. Additionally, a complex VTIDE is constructed featuring nonlinearities both within and outside the convolutions, as well as a derivative-of-dependent-variable integrant. This setup enables the synergy of differentiation, integration, and RK schemes to generate data for intricate VTIDE types. Consequently, both the scheme and the equation exhibit uniqueness denoted as TE-RK and TE-RK-VTIDE. We illustrate how this development simplifies the implementation of implicit schemes and the calculation of stability regions concerning the convolution. The TE-RK scheme is tested on VTIDE using RK2 and RK4, yielding plots that exhibit strong agreement, thus validating our approach. Furthermore, we successfully apply the TE-RK scheme to a well-known nonlinear logistic equation. Plots for various step sizes are generated alongside corresponding error graphs, demonstrating consistent trends in error behavior.</div></div>","PeriodicalId":21690,"journal":{"name":"Scientific African","volume":"26 ","pages":"Article e02443"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing linear/non-linear Volterra-type integro-differential equations with Runge–Kutta 2 and 4 for time efficiency\",\"authors\":\"Martin Ndi Azese\",\"doi\":\"10.1016/j.sciaf.2024.e02443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel non-adaptative time-efficient (TE) numerical scheme based on the Runge–Kutta (RK) algorithm is devised for solving linear and non-linear Volterra-type integro-differential equations (VTIDE) characterized by a specific class of convolution memory, <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>κ</mi><mrow><mo>(</mo><mi>t</mi><mo>−</mo><mi>s</mi><mo>)</mo></mrow></mrow></msup></mrow></math></span>, where <span><math><mrow><mi>a</mi><mo>,</mo><mspace></mspace><mi>κ</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. This kernel is commonly encountered in viscoelasticity and various applied sciences. The integration governing the convolution term is elegantly reformulated, allowing for the implementation of a backstage integration within the RK scheme’s main body. This approach circumvents the need for full integration of the convolution during each iteration, thereby significantly reducing computational time to <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> for <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> iterations. Furthermore, this formulation facilitates the adoption of an implicit scheme by selecting appropriate methods and data stencils. We demonstrate this concept using an implicit trapezoidal method applied to a linear VTIDE, accompanied by stability analyses. Additionally, a complex VTIDE is constructed featuring nonlinearities both within and outside the convolutions, as well as a derivative-of-dependent-variable integrant. This setup enables the synergy of differentiation, integration, and RK schemes to generate data for intricate VTIDE types. Consequently, both the scheme and the equation exhibit uniqueness denoted as TE-RK and TE-RK-VTIDE. We illustrate how this development simplifies the implementation of implicit schemes and the calculation of stability regions concerning the convolution. The TE-RK scheme is tested on VTIDE using RK2 and RK4, yielding plots that exhibit strong agreement, thus validating our approach. Furthermore, we successfully apply the TE-RK scheme to a well-known nonlinear logistic equation. Plots for various step sizes are generated alongside corresponding error graphs, demonstrating consistent trends in error behavior.</div></div>\",\"PeriodicalId\":21690,\"journal\":{\"name\":\"Scientific African\",\"volume\":\"26 \",\"pages\":\"Article e02443\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific African\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468227624003855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific African","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468227624003855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基于 Runge-Kutta (RK) 算法设计了一种新颖的非适应性时间效率 (TE) 数值方案,用于求解线性和非线性 Volterra 型积分微分方程 (VTIDE),其特征是一类特定的卷积记忆 K(t,s)=aκ(t-s),其中 a,κ∈R。这种核在粘弹性和各种应用科学中都很常见。对卷积项的积分进行了优雅的重新表述,允许在 RK 方案的主体中实施后台积分。这种方法避免了在每次迭代过程中对卷积项进行完全积分的需要,从而将 Nt 次迭代的计算时间大幅缩短为 O(Nt)。此外,通过选择适当的方法和数据模板,这种表述方式还有助于采用隐式方案。我们使用隐式梯形法对线性 VTIDE 进行了演示,并进行了稳定性分析。此外,我们还构建了一个复杂的 VTIDE,其特点是在卷积内部和外部都存在非线性,同时还存在随变积分导数。这种设置使微分、积分和 RK 方案能够协同作用,为复杂的 VTIDE 类型生成数据。因此,该方案和方程都表现出唯一性,分别称为 TE-RK 和 TE-RK-VTIDE。我们说明了这一发展如何简化了隐式方案的实施和有关卷积的稳定区域的计算。我们使用 RK2 和 RK4 对 TE-RK 方案在 VTIDE 上进行了测试,得出的曲线图显示出很强的一致性,从而验证了我们的方法。此外,我们还成功地将 TE-RK 方案应用于一个著名的非线性逻辑方程。在生成相应误差图的同时,还生成了各种步长的曲线图,显示了误差行为的一致趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing linear/non-linear Volterra-type integro-differential equations with Runge–Kutta 2 and 4 for time efficiency
A novel non-adaptative time-efficient (TE) numerical scheme based on the Runge–Kutta (RK) algorithm is devised for solving linear and non-linear Volterra-type integro-differential equations (VTIDE) characterized by a specific class of convolution memory, K(t,s)=aκ(ts), where a,κR. This kernel is commonly encountered in viscoelasticity and various applied sciences. The integration governing the convolution term is elegantly reformulated, allowing for the implementation of a backstage integration within the RK scheme’s main body. This approach circumvents the need for full integration of the convolution during each iteration, thereby significantly reducing computational time to O(Nt) for Nt iterations. Furthermore, this formulation facilitates the adoption of an implicit scheme by selecting appropriate methods and data stencils. We demonstrate this concept using an implicit trapezoidal method applied to a linear VTIDE, accompanied by stability analyses. Additionally, a complex VTIDE is constructed featuring nonlinearities both within and outside the convolutions, as well as a derivative-of-dependent-variable integrant. This setup enables the synergy of differentiation, integration, and RK schemes to generate data for intricate VTIDE types. Consequently, both the scheme and the equation exhibit uniqueness denoted as TE-RK and TE-RK-VTIDE. We illustrate how this development simplifies the implementation of implicit schemes and the calculation of stability regions concerning the convolution. The TE-RK scheme is tested on VTIDE using RK2 and RK4, yielding plots that exhibit strong agreement, thus validating our approach. Furthermore, we successfully apply the TE-RK scheme to a well-known nonlinear logistic equation. Plots for various step sizes are generated alongside corresponding error graphs, demonstrating consistent trends in error behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific African
Scientific African Multidisciplinary-Multidisciplinary
CiteScore
5.60
自引率
3.40%
发文量
332
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信