Yusuf Zuntu Abdullahi , Ikram Djebablia , Sohail Ahmad
{"title":"用于反铁磁自旋电子学和储氢的新型 B6P6X(X=As,Sb)单层膜","authors":"Yusuf Zuntu Abdullahi , Ikram Djebablia , Sohail Ahmad","doi":"10.1016/j.jpcs.2024.112431","DOIUrl":null,"url":null,"abstract":"<div><div>Embedding foreign atoms into porous two-dimensional (2D) materials has emerged as a promising strategy to tailor their electronic, magnetic, and adsorption properties, enabling promising applications in energy storage and spintronics devices. In this work, spin-polarized density functional theory (DFT) calculations were employed to investigate the ground state properties and hydrogen (H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) storage of interstitially X = As and Sb atom doped <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> (<span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span>) graphenylene monolayers. The resulting <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span> (X = As, Sb) monolayers exhibit very good mechanical, dynamical, and thermal stabilities with antiferromagnetic (AFM) ground states. Electronic structure calculations reveal AFM semiconducting behavior for both monolayers, with indirect/direct band gaps of 0.71/0.60 eV (PBE) and 2.19/2.14 eV (HSE06) for <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>A</mi><mi>s</mi></mrow></math></span>/<span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>S</mi><mi>b</mi></mrow></math></span>, respectively. All <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span> monolayers exhibit an in-plane easy magnetization axis. The obtained Berezinskii–Kosterlitz–Thouless transition (BKT) temperature value of <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>S</mi><mi>b</mi></mrow></math></span> monolayer is 268.74 K. Furthermore, the H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> storage capabilities of these <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span> monolayers were examined. We find that <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>A</mi><mi>s</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>S</mi><mi>b</mi></mrow></math></span> monolayers can each adsorb up to 48H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> molecules with an average adsorption energy (<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>) of -0.14 eV/H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. The corresponding H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> storage gravimetric capacities are 6.91 wt% for <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>A</mi><mi>s</mi></mrow></math></span>@48H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and 6.10 wt% for <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>A</mi><mi>s</mi></mrow></math></span>@48H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, surpassing the U.S. Department of Energy’s 2025 target of 5.50 wt%. These findings highlighting the potential of <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span> (X = As, Sb) monolayers for AFM spintronics and H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> storage applications.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112431"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel B6P6X (X=As, Sb) monolayers for antiferromagnetic spintronics and hydrogen storage\",\"authors\":\"Yusuf Zuntu Abdullahi , Ikram Djebablia , Sohail Ahmad\",\"doi\":\"10.1016/j.jpcs.2024.112431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Embedding foreign atoms into porous two-dimensional (2D) materials has emerged as a promising strategy to tailor their electronic, magnetic, and adsorption properties, enabling promising applications in energy storage and spintronics devices. In this work, spin-polarized density functional theory (DFT) calculations were employed to investigate the ground state properties and hydrogen (H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) storage of interstitially X = As and Sb atom doped <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> (<span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span>) graphenylene monolayers. The resulting <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span> (X = As, Sb) monolayers exhibit very good mechanical, dynamical, and thermal stabilities with antiferromagnetic (AFM) ground states. Electronic structure calculations reveal AFM semiconducting behavior for both monolayers, with indirect/direct band gaps of 0.71/0.60 eV (PBE) and 2.19/2.14 eV (HSE06) for <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>A</mi><mi>s</mi></mrow></math></span>/<span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>S</mi><mi>b</mi></mrow></math></span>, respectively. All <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span> monolayers exhibit an in-plane easy magnetization axis. The obtained Berezinskii–Kosterlitz–Thouless transition (BKT) temperature value of <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>S</mi><mi>b</mi></mrow></math></span> monolayer is 268.74 K. Furthermore, the H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> storage capabilities of these <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span> monolayers were examined. We find that <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>A</mi><mi>s</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>S</mi><mi>b</mi></mrow></math></span> monolayers can each adsorb up to 48H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> molecules with an average adsorption energy (<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>) of -0.14 eV/H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>. The corresponding H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> storage gravimetric capacities are 6.91 wt% for <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>A</mi><mi>s</mi></mrow></math></span>@48H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> and 6.10 wt% for <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>A</mi><mi>s</mi></mrow></math></span>@48H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>, surpassing the U.S. Department of Energy’s 2025 target of 5.50 wt%. These findings highlighting the potential of <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span> (X = As, Sb) monolayers for AFM spintronics and H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> storage applications.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"197 \",\"pages\":\"Article 112431\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724005663\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005663","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Novel B6P6X (X=As, Sb) monolayers for antiferromagnetic spintronics and hydrogen storage
Embedding foreign atoms into porous two-dimensional (2D) materials has emerged as a promising strategy to tailor their electronic, magnetic, and adsorption properties, enabling promising applications in energy storage and spintronics devices. In this work, spin-polarized density functional theory (DFT) calculations were employed to investigate the ground state properties and hydrogen (H) storage of interstitially X = As and Sb atom doped () graphenylene monolayers. The resulting (X = As, Sb) monolayers exhibit very good mechanical, dynamical, and thermal stabilities with antiferromagnetic (AFM) ground states. Electronic structure calculations reveal AFM semiconducting behavior for both monolayers, with indirect/direct band gaps of 0.71/0.60 eV (PBE) and 2.19/2.14 eV (HSE06) for /, respectively. All monolayers exhibit an in-plane easy magnetization axis. The obtained Berezinskii–Kosterlitz–Thouless transition (BKT) temperature value of monolayer is 268.74 K. Furthermore, the H storage capabilities of these monolayers were examined. We find that and monolayers can each adsorb up to 48H molecules with an average adsorption energy () of -0.14 eV/H. The corresponding H storage gravimetric capacities are 6.91 wt% for @48H and 6.10 wt% for @48H, surpassing the U.S. Department of Energy’s 2025 target of 5.50 wt%. These findings highlighting the potential of (X = As, Sb) monolayers for AFM spintronics and H storage applications.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.