{"title":"纱球状石墨烯微球涂层隔膜设计可提高锂-S 电池的电化学性能","authors":"Thi Ai Ngoc Bui , Yu-Sheng Su","doi":"10.1016/j.jpowsour.2024.235828","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-sulfur batteries (LSBs) present a promising alternative to conventional lithium-ion (Li-ion) batteries due to their high energy density and theoretical capacity. However, their practical application is hindered by issues such as poor sulfur utilization, highly soluble lithium polysulfides (LiPSs), and rapid capacity decay. This study introduces an innovative cell configuration using a separator coated with reduced graphene oxide/carbon nanotube (rGO/CNT) microspheres. The rGO/CNT-coated separator aims to enhance electron transfer, confine LiPSs within the cathode region, and mitigate their migration to the anode. In particular, the LSB cell with an rGO/CNT-modified separator delivers an impressive initial capacity of 1482 mAh g<sup>−1</sup> and demonstrates a low capacity decay rate of 0.09% per cycle. The highly conductive rGO/CNT-coated separator enhances active material utilization even at high rates, resulting in a significant capacity of 824 mAh g<sup>−1</sup> at 4C. Furthermore, the rGO/CNT-modified separator shows an impressive capacity of 895 mAh g<sup>−1</sup> under high sulfur loading of 4.8 mg cm<sup>−2</sup> with long-term cycling performance. The results demonstrate that the rGO/CNT-coated separator significantly enhances sulfur reutilization, reduces capacity decay, and improves the electrochemical stability of LSBs. This configuration simplifies the manufacturing process and offers a viable solution for the practical application of LSBs.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"627 ","pages":"Article 235828"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A yarn-ball-shaped graphene microsphere-coated separator design for enhanced electrochemical performance in Li-S batteries\",\"authors\":\"Thi Ai Ngoc Bui , Yu-Sheng Su\",\"doi\":\"10.1016/j.jpowsour.2024.235828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lithium-sulfur batteries (LSBs) present a promising alternative to conventional lithium-ion (Li-ion) batteries due to their high energy density and theoretical capacity. However, their practical application is hindered by issues such as poor sulfur utilization, highly soluble lithium polysulfides (LiPSs), and rapid capacity decay. This study introduces an innovative cell configuration using a separator coated with reduced graphene oxide/carbon nanotube (rGO/CNT) microspheres. The rGO/CNT-coated separator aims to enhance electron transfer, confine LiPSs within the cathode region, and mitigate their migration to the anode. In particular, the LSB cell with an rGO/CNT-modified separator delivers an impressive initial capacity of 1482 mAh g<sup>−1</sup> and demonstrates a low capacity decay rate of 0.09% per cycle. The highly conductive rGO/CNT-coated separator enhances active material utilization even at high rates, resulting in a significant capacity of 824 mAh g<sup>−1</sup> at 4C. Furthermore, the rGO/CNT-modified separator shows an impressive capacity of 895 mAh g<sup>−1</sup> under high sulfur loading of 4.8 mg cm<sup>−2</sup> with long-term cycling performance. The results demonstrate that the rGO/CNT-coated separator significantly enhances sulfur reutilization, reduces capacity decay, and improves the electrochemical stability of LSBs. This configuration simplifies the manufacturing process and offers a viable solution for the practical application of LSBs.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"627 \",\"pages\":\"Article 235828\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324017804\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324017804","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A yarn-ball-shaped graphene microsphere-coated separator design for enhanced electrochemical performance in Li-S batteries
Lithium-sulfur batteries (LSBs) present a promising alternative to conventional lithium-ion (Li-ion) batteries due to their high energy density and theoretical capacity. However, their practical application is hindered by issues such as poor sulfur utilization, highly soluble lithium polysulfides (LiPSs), and rapid capacity decay. This study introduces an innovative cell configuration using a separator coated with reduced graphene oxide/carbon nanotube (rGO/CNT) microspheres. The rGO/CNT-coated separator aims to enhance electron transfer, confine LiPSs within the cathode region, and mitigate their migration to the anode. In particular, the LSB cell with an rGO/CNT-modified separator delivers an impressive initial capacity of 1482 mAh g−1 and demonstrates a low capacity decay rate of 0.09% per cycle. The highly conductive rGO/CNT-coated separator enhances active material utilization even at high rates, resulting in a significant capacity of 824 mAh g−1 at 4C. Furthermore, the rGO/CNT-modified separator shows an impressive capacity of 895 mAh g−1 under high sulfur loading of 4.8 mg cm−2 with long-term cycling performance. The results demonstrate that the rGO/CNT-coated separator significantly enhances sulfur reutilization, reduces capacity decay, and improves the electrochemical stability of LSBs. This configuration simplifies the manufacturing process and offers a viable solution for the practical application of LSBs.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems