J. Nandhini , E. Karthikeyan , E. Elizabeth Rani , V.S. Karthikha
{"title":"开发并表征含索拉氨非醇的 PVA/PLGA 电纺纳米纤维膜:一种有望持续治疗嗜睡症的方法","authors":"J. Nandhini , E. Karthikeyan , E. Elizabeth Rani , V.S. Karthikha","doi":"10.1016/j.nanoso.2024.101407","DOIUrl":null,"url":null,"abstract":"<div><div>Narcolepsy presents challenges in medication adherence and delivery, with traditional oral medications not always suitable for patients experiencing unexpected sleep episodes or difficulty in swallowing pills. This study focused on developing a solriamfetol (SF) loaded nanofiber membrane using a polymer blend of polyvinyl alcohol (PVA) and polylactic-co-glycolic acid (PLGA) for the management of narcoleptic patients with non-oral dosage options. The design required synthesis, optimization, characterization, and evaluation of these nanofibers for transdermal drug delivery. Using a Box-Behnken design, the nanofibers were produced via the electrospinning technique, achieving a high drug content of 96.31 ± 1.21 % and entrapment efficiency of 96.18 ± 1.42 %. The in vitro drug release studies demonstrated a prolonged release profile of SF over 24 h, with 97 % ± 2 % of the drug released. The SEM analysis revealed that the surface morphology of the nanofibers was smooth and homogenous, and the average diameter of the SF/PVA/PLGA nanofibers was found to be 150.23 ± 2.50 nm. X-ray diffraction results confirmed the amorphous structure of the nanofibers. The zebrafish embryonic toxicological study did not reveal any signs of toxicity or morphological abnormalities in the developing embryos, indicating that the nanofibers are safe. The results point to the applicability of SF nanofiber membranes in personalized narcolepsy therapy, which improves patients’ quality of life and the efficacy of their treatment. These nanofibers can be given in the form of a transdermal patch to patients for sustained drug delivery, even when they fall asleep or when they cannot take medicines orally.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101407"},"PeriodicalIF":5.4500,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and characterization of solriamfetol-loaded PVA/PLGA electrospun nanofiber membranes: A promising approach for sustained narcolepsy treatment\",\"authors\":\"J. Nandhini , E. Karthikeyan , E. Elizabeth Rani , V.S. Karthikha\",\"doi\":\"10.1016/j.nanoso.2024.101407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Narcolepsy presents challenges in medication adherence and delivery, with traditional oral medications not always suitable for patients experiencing unexpected sleep episodes or difficulty in swallowing pills. This study focused on developing a solriamfetol (SF) loaded nanofiber membrane using a polymer blend of polyvinyl alcohol (PVA) and polylactic-co-glycolic acid (PLGA) for the management of narcoleptic patients with non-oral dosage options. The design required synthesis, optimization, characterization, and evaluation of these nanofibers for transdermal drug delivery. Using a Box-Behnken design, the nanofibers were produced via the electrospinning technique, achieving a high drug content of 96.31 ± 1.21 % and entrapment efficiency of 96.18 ± 1.42 %. The in vitro drug release studies demonstrated a prolonged release profile of SF over 24 h, with 97 % ± 2 % of the drug released. The SEM analysis revealed that the surface morphology of the nanofibers was smooth and homogenous, and the average diameter of the SF/PVA/PLGA nanofibers was found to be 150.23 ± 2.50 nm. X-ray diffraction results confirmed the amorphous structure of the nanofibers. The zebrafish embryonic toxicological study did not reveal any signs of toxicity or morphological abnormalities in the developing embryos, indicating that the nanofibers are safe. The results point to the applicability of SF nanofiber membranes in personalized narcolepsy therapy, which improves patients’ quality of life and the efficacy of their treatment. These nanofibers can be given in the form of a transdermal patch to patients for sustained drug delivery, even when they fall asleep or when they cannot take medicines orally.</div></div>\",\"PeriodicalId\":397,\"journal\":{\"name\":\"Nano-Structures & Nano-Objects\",\"volume\":\"40 \",\"pages\":\"Article 101407\"},\"PeriodicalIF\":5.4500,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Structures & Nano-Objects\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352507X24003196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24003196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Development and characterization of solriamfetol-loaded PVA/PLGA electrospun nanofiber membranes: A promising approach for sustained narcolepsy treatment
Narcolepsy presents challenges in medication adherence and delivery, with traditional oral medications not always suitable for patients experiencing unexpected sleep episodes or difficulty in swallowing pills. This study focused on developing a solriamfetol (SF) loaded nanofiber membrane using a polymer blend of polyvinyl alcohol (PVA) and polylactic-co-glycolic acid (PLGA) for the management of narcoleptic patients with non-oral dosage options. The design required synthesis, optimization, characterization, and evaluation of these nanofibers for transdermal drug delivery. Using a Box-Behnken design, the nanofibers were produced via the electrospinning technique, achieving a high drug content of 96.31 ± 1.21 % and entrapment efficiency of 96.18 ± 1.42 %. The in vitro drug release studies demonstrated a prolonged release profile of SF over 24 h, with 97 % ± 2 % of the drug released. The SEM analysis revealed that the surface morphology of the nanofibers was smooth and homogenous, and the average diameter of the SF/PVA/PLGA nanofibers was found to be 150.23 ± 2.50 nm. X-ray diffraction results confirmed the amorphous structure of the nanofibers. The zebrafish embryonic toxicological study did not reveal any signs of toxicity or morphological abnormalities in the developing embryos, indicating that the nanofibers are safe. The results point to the applicability of SF nanofiber membranes in personalized narcolepsy therapy, which improves patients’ quality of life and the efficacy of their treatment. These nanofibers can be given in the form of a transdermal patch to patients for sustained drug delivery, even when they fall asleep or when they cannot take medicines orally.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .