{"title":"年度农作物生产可行性指数","authors":"Fernanda Laurinda Valadares Ferreira , Lineu Neiva Rodrigues","doi":"10.1016/j.agsy.2024.104173","DOIUrl":null,"url":null,"abstract":"<div><h3>CONTEXT</h3><div>In the face of intensifying challenges for sustainable food production, well-planned agricultural development is crucial to mitigate climate impacts and manage blue water demands. Tools and methodologies that support public policy for sustainable regional growth are essential, especially in regions lacking hydroclimatic data, which complicates the use of simulation models for efficient water management. An effective tool should identify areas most suitable for rainfed and irrigated agriculture, optimizing planting dates, crop types, and rotations.</div></div><div><h3>OBJECTIVE</h3><div>To develop an index to assess the most suitable areas, inside regions, for developing rainfed and irrigated annual crops.</div></div><div><h3>METHODS</h3><div>The proposed Production Viability Index (PVI) combines ISDIA (Irrigated Agriculture Suitability Indicator) and ISDRA (Rainfed Agriculture Suitability Indicator) to represent suitability for irrigated and rainfed agriculture. Each indicator comprises five sub-indicators reflecting plant characteristics, soil, climate, and water availability in crop production. A Python routine was developed to calculate the PVI, which was then used to assess soybean production suitability across 204 million hectares in Brazil's Cerrado (Brazilian savannah), the country's second-largest biome. Three planting dates (September 15, October 15, and November 15) were simulated, evaluating the Cerrado's suitability and identifying the best planting date per area.</div></div><div><h3>RESULTS AND CONCLUSIONS</h3><div>The PVI for Annual Crops proves to be a valuable tool for agricultural planning, enabling the identification of areas with varying suitability for sustainable agricultural development. Based on factors such as climate, soil, plant characteristics, and water availability, the PVI is not intended to determine if a crop can be produced in a specific area but rather to identify locations with greater cultivation potential across different periods and crop types. Results highlight suitability variations throughout the months, underscoring the need for dynamic planning that accounts for seasonality and regional characteristics. Consequently, the PVI significantly supports managers and agricultural planners in developing adaptive strategies, maximizing agricultural productivity and resilience across diverse agro-ecological contexts.</div></div><div><h3>SIGNIFICANCE</h3><div>This work's primary contribution is the development of an index to classify areas within regions based on rainfed and irrigated agriculture potential, relying on basic, accessible data sets for soil, climate, water, and plant information. These findings aid planners in identifying the most suitable areas for sustainable agricultural expansion, enhancing annual crop production while mitigating water use conflicts.</div></div>","PeriodicalId":7730,"journal":{"name":"Agricultural Systems","volume":"222 ","pages":"Article 104173"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production viability index for annual agricultural crops\",\"authors\":\"Fernanda Laurinda Valadares Ferreira , Lineu Neiva Rodrigues\",\"doi\":\"10.1016/j.agsy.2024.104173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>CONTEXT</h3><div>In the face of intensifying challenges for sustainable food production, well-planned agricultural development is crucial to mitigate climate impacts and manage blue water demands. Tools and methodologies that support public policy for sustainable regional growth are essential, especially in regions lacking hydroclimatic data, which complicates the use of simulation models for efficient water management. An effective tool should identify areas most suitable for rainfed and irrigated agriculture, optimizing planting dates, crop types, and rotations.</div></div><div><h3>OBJECTIVE</h3><div>To develop an index to assess the most suitable areas, inside regions, for developing rainfed and irrigated annual crops.</div></div><div><h3>METHODS</h3><div>The proposed Production Viability Index (PVI) combines ISDIA (Irrigated Agriculture Suitability Indicator) and ISDRA (Rainfed Agriculture Suitability Indicator) to represent suitability for irrigated and rainfed agriculture. Each indicator comprises five sub-indicators reflecting plant characteristics, soil, climate, and water availability in crop production. A Python routine was developed to calculate the PVI, which was then used to assess soybean production suitability across 204 million hectares in Brazil's Cerrado (Brazilian savannah), the country's second-largest biome. Three planting dates (September 15, October 15, and November 15) were simulated, evaluating the Cerrado's suitability and identifying the best planting date per area.</div></div><div><h3>RESULTS AND CONCLUSIONS</h3><div>The PVI for Annual Crops proves to be a valuable tool for agricultural planning, enabling the identification of areas with varying suitability for sustainable agricultural development. Based on factors such as climate, soil, plant characteristics, and water availability, the PVI is not intended to determine if a crop can be produced in a specific area but rather to identify locations with greater cultivation potential across different periods and crop types. Results highlight suitability variations throughout the months, underscoring the need for dynamic planning that accounts for seasonality and regional characteristics. Consequently, the PVI significantly supports managers and agricultural planners in developing adaptive strategies, maximizing agricultural productivity and resilience across diverse agro-ecological contexts.</div></div><div><h3>SIGNIFICANCE</h3><div>This work's primary contribution is the development of an index to classify areas within regions based on rainfed and irrigated agriculture potential, relying on basic, accessible data sets for soil, climate, water, and plant information. These findings aid planners in identifying the most suitable areas for sustainable agricultural expansion, enhancing annual crop production while mitigating water use conflicts.</div></div>\",\"PeriodicalId\":7730,\"journal\":{\"name\":\"Agricultural Systems\",\"volume\":\"222 \",\"pages\":\"Article 104173\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural Systems\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308521X24003238\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Systems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308521X24003238","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Production viability index for annual agricultural crops
CONTEXT
In the face of intensifying challenges for sustainable food production, well-planned agricultural development is crucial to mitigate climate impacts and manage blue water demands. Tools and methodologies that support public policy for sustainable regional growth are essential, especially in regions lacking hydroclimatic data, which complicates the use of simulation models for efficient water management. An effective tool should identify areas most suitable for rainfed and irrigated agriculture, optimizing planting dates, crop types, and rotations.
OBJECTIVE
To develop an index to assess the most suitable areas, inside regions, for developing rainfed and irrigated annual crops.
METHODS
The proposed Production Viability Index (PVI) combines ISDIA (Irrigated Agriculture Suitability Indicator) and ISDRA (Rainfed Agriculture Suitability Indicator) to represent suitability for irrigated and rainfed agriculture. Each indicator comprises five sub-indicators reflecting plant characteristics, soil, climate, and water availability in crop production. A Python routine was developed to calculate the PVI, which was then used to assess soybean production suitability across 204 million hectares in Brazil's Cerrado (Brazilian savannah), the country's second-largest biome. Three planting dates (September 15, October 15, and November 15) were simulated, evaluating the Cerrado's suitability and identifying the best planting date per area.
RESULTS AND CONCLUSIONS
The PVI for Annual Crops proves to be a valuable tool for agricultural planning, enabling the identification of areas with varying suitability for sustainable agricultural development. Based on factors such as climate, soil, plant characteristics, and water availability, the PVI is not intended to determine if a crop can be produced in a specific area but rather to identify locations with greater cultivation potential across different periods and crop types. Results highlight suitability variations throughout the months, underscoring the need for dynamic planning that accounts for seasonality and regional characteristics. Consequently, the PVI significantly supports managers and agricultural planners in developing adaptive strategies, maximizing agricultural productivity and resilience across diverse agro-ecological contexts.
SIGNIFICANCE
This work's primary contribution is the development of an index to classify areas within regions based on rainfed and irrigated agriculture potential, relying on basic, accessible data sets for soil, climate, water, and plant information. These findings aid planners in identifying the most suitable areas for sustainable agricultural expansion, enhancing annual crop production while mitigating water use conflicts.
期刊介绍:
Agricultural Systems is an international journal that deals with interactions - among the components of agricultural systems, among hierarchical levels of agricultural systems, between agricultural and other land use systems, and between agricultural systems and their natural, social and economic environments.
The scope includes the development and application of systems analysis methodologies in the following areas:
Systems approaches in the sustainable intensification of agriculture; pathways for sustainable intensification; crop-livestock integration; farm-level resource allocation; quantification of benefits and trade-offs at farm to landscape levels; integrative, participatory and dynamic modelling approaches for qualitative and quantitative assessments of agricultural systems and decision making;
The interactions between agricultural and non-agricultural landscapes; the multiple services of agricultural systems; food security and the environment;
Global change and adaptation science; transformational adaptations as driven by changes in climate, policy, values and attitudes influencing the design of farming systems;
Development and application of farming systems design tools and methods for impact, scenario and case study analysis; managing the complexities of dynamic agricultural systems; innovation systems and multi stakeholder arrangements that support or promote change and (or) inform policy decisions.