具有相同表示函数的 Zm 分区

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Cui-Fang Sun, Zhi Cheng
{"title":"具有相同表示函数的 Zm 分区","authors":"Cui-Fang Sun,&nbsp;Zhi Cheng","doi":"10.1016/j.dam.2024.11.010","DOIUrl":null,"url":null,"abstract":"<div><div>For any positive integer <span><math><mi>m</mi></math></span>, let <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> be the set of residue classes modulo <span><math><mi>m</mi></math></span>. For <span><math><mrow><mi>A</mi><mo>⊆</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span>, let the representation function <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span> denote the number of solutions of the equation <span><math><mrow><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>=</mo><mover><mrow><mi>a</mi></mrow><mo>¯</mo></mover><mo>+</mo><mover><mrow><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow><mo>¯</mo></mover></mrow></math></span> with unordered pairs <span><math><mrow><mrow><mo>(</mo><mover><mrow><mi>a</mi></mrow><mo>¯</mo></mover><mo>,</mo><mover><mrow><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>∈</mo><mi>A</mi><mo>×</mo><mi>A</mi></mrow></math></span>. Let <span><math><mrow><mi>m</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>α</mi></mrow></msup><mi>M</mi></mrow></math></span>, where <span><math><mi>α</mi></math></span> is a nonnegative integer and <span><math><mi>M</mi></math></span> is a positive odd integer. In this paper, we prove that if <span><math><mrow><mi>M</mi><mo>=</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mn>2</mn><mo>∤</mo><mi>α</mi></mrow></math></span>, then there exist two distinct sets <span><math><mrow><mi>A</mi><mo>,</mo><mi>B</mi><mo>⊆</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> with <span><math><mrow><mi>A</mi><mo>∪</mo><mi>B</mi><mo>=</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>∖</mo><mrow><mo>{</mo><mover><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>}</mo></mrow><mo>,</mo><mi>A</mi><mo>∩</mo><mi>B</mi><mo>=</mo><mrow><mo>{</mo><mover><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>}</mo></mrow></mrow></math></span> such that <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>B</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span>. We also prove that if <span><math><mrow><mi>M</mi><mo>≥</mo><mn>3</mn></mrow></math></span> or <span><math><mrow><mi>M</mi><mo>=</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mn>2</mn><mo>∣</mo><mi>α</mi></mrow></math></span>, then there do not exist two distinct sets <span><math><mrow><mi>A</mi><mo>,</mo><mi>B</mi><mo>⊆</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> with <span><math><mrow><mi>A</mi><mo>∪</mo><mi>B</mi><mo>=</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>∖</mo><mrow><mo>{</mo><mover><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>}</mo></mrow></mrow></math></span> and <span><math><mrow><mi>A</mi><mo>∩</mo><mi>B</mi><mo>=</mo><mrow><mo>{</mo><mover><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>}</mo></mrow></mrow></math></span> such that <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>B</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span></div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"362 ","pages":"Pages 1-10"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partitions of Zm with identical representation functions\",\"authors\":\"Cui-Fang Sun,&nbsp;Zhi Cheng\",\"doi\":\"10.1016/j.dam.2024.11.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For any positive integer <span><math><mi>m</mi></math></span>, let <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> be the set of residue classes modulo <span><math><mi>m</mi></math></span>. For <span><math><mrow><mi>A</mi><mo>⊆</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span>, let the representation function <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span> denote the number of solutions of the equation <span><math><mrow><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>=</mo><mover><mrow><mi>a</mi></mrow><mo>¯</mo></mover><mo>+</mo><mover><mrow><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow><mo>¯</mo></mover></mrow></math></span> with unordered pairs <span><math><mrow><mrow><mo>(</mo><mover><mrow><mi>a</mi></mrow><mo>¯</mo></mover><mo>,</mo><mover><mrow><msup><mrow><mi>a</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>∈</mo><mi>A</mi><mo>×</mo><mi>A</mi></mrow></math></span>. Let <span><math><mrow><mi>m</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>α</mi></mrow></msup><mi>M</mi></mrow></math></span>, where <span><math><mi>α</mi></math></span> is a nonnegative integer and <span><math><mi>M</mi></math></span> is a positive odd integer. In this paper, we prove that if <span><math><mrow><mi>M</mi><mo>=</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mn>2</mn><mo>∤</mo><mi>α</mi></mrow></math></span>, then there exist two distinct sets <span><math><mrow><mi>A</mi><mo>,</mo><mi>B</mi><mo>⊆</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> with <span><math><mrow><mi>A</mi><mo>∪</mo><mi>B</mi><mo>=</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>∖</mo><mrow><mo>{</mo><mover><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>}</mo></mrow><mo>,</mo><mi>A</mi><mo>∩</mo><mi>B</mi><mo>=</mo><mrow><mo>{</mo><mover><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>}</mo></mrow></mrow></math></span> such that <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>B</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span>. We also prove that if <span><math><mrow><mi>M</mi><mo>≥</mo><mn>3</mn></mrow></math></span> or <span><math><mrow><mi>M</mi><mo>=</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mn>2</mn><mo>∣</mo><mi>α</mi></mrow></math></span>, then there do not exist two distinct sets <span><math><mrow><mi>A</mi><mo>,</mo><mi>B</mi><mo>⊆</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span> with <span><math><mrow><mi>A</mi><mo>∪</mo><mi>B</mi><mo>=</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>∖</mo><mrow><mo>{</mo><mover><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>}</mo></mrow></mrow></math></span> and <span><math><mrow><mi>A</mi><mo>∩</mo><mi>B</mi><mo>=</mo><mrow><mo>{</mo><mover><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mo>¯</mo></mover><mo>}</mo></mrow></mrow></math></span> such that <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>B</mi></mrow></msub><mrow><mo>(</mo><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow></mrow></math></span> for all <span><math><mrow><mover><mrow><mi>n</mi></mrow><mo>¯</mo></mover><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span></div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"362 \",\"pages\":\"Pages 1-10\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24004797\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004797","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

对于任意正整数 m,让 Zm 成为残差类 modulo m 的集合。对于 A⊆Zm 和 n¯∈Zm,让表示函数 RA(n¯) 表示方程 n¯=a¯+a′¯ 的解的数目,其中无序对 (a¯,a′¯)∈A×A.设 m=2αM,其中 α 为非负整数,M 为正奇数。本文将证明,若 M=1 且 2∤α,则存在两个不同的集合 A,B⊆Zm,其中 A∪B=Zm∖{r1¯},A∩B={r2¯},从而对于所有 n¯∈Zm,RA(n¯)=RB(n¯)。我们还证明,如果 M≥3 或 M=1 且 2∣α,则不存在两个不同的集合 A,B⊆Zm 且 A∪B=Zm∖{r1¯} 和 A∩B={r2¯} 使得 RA(n¯)=RB(n¯) for all n¯∈Zm
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partitions of Zm with identical representation functions
For any positive integer m, let Zm be the set of residue classes modulo m. For AZm and n¯Zm, let the representation function RA(n¯) denote the number of solutions of the equation n¯=a¯+a¯ with unordered pairs (a¯,a¯)A×A. Let m=2αM, where α is a nonnegative integer and M is a positive odd integer. In this paper, we prove that if M=1 and 2α, then there exist two distinct sets A,BZm with AB=Zm{r1¯},AB={r2¯} such that RA(n¯)=RB(n¯) for all n¯Zm. We also prove that if M3 or M=1 and 2α, then there do not exist two distinct sets A,BZm with AB=Zm{r1¯} and AB={r2¯} such that RA(n¯)=RB(n¯) for all n¯Zm
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信