用于气动声学和基于邻接的灵敏度计算的滑动平面形式主义

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Anton Glazkov , Miguel Fosas de Pando , Peter J. Schmid , Li He
{"title":"用于气动声学和基于邻接的灵敏度计算的滑动平面形式主义","authors":"Anton Glazkov ,&nbsp;Miguel Fosas de Pando ,&nbsp;Peter J. Schmid ,&nbsp;Li He","doi":"10.1016/j.cpc.2024.109421","DOIUrl":null,"url":null,"abstract":"<div><div>This paper demonstrates a methodology for time-domain and time-accurate nonlinear, direct and adjoint simulations of unsteady flows and aeroacoustics for multi-component systems in relative motion. Here, the principal effort is directed towards mitigating the problem of distortion and contamination of the <em>adjoint</em> field at the moving interface, through a computationally lightweight, high-order sliding plane approach for which the adjoint equivalent is simple to obtain. This effort requires an attentive treatment of the interface conditions that surpasses the requirements of the more common forward (primary) problem. Sensitivity of a given quantity of interest from a time-varying flow with respect to a large number of parameters is then obtained through the adjoint operator, which is evaluated using nonlinear-adjoint looping. This technique is implemented using checkpointing and the PETSc <span>TSAdjoint</span> library and, after validation, applications including a rotor–stator interaction problem are presented.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"307 ","pages":"Article 109421"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sliding plane formalism for aeroacoustic and adjoint-based sensitivity calculations\",\"authors\":\"Anton Glazkov ,&nbsp;Miguel Fosas de Pando ,&nbsp;Peter J. Schmid ,&nbsp;Li He\",\"doi\":\"10.1016/j.cpc.2024.109421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper demonstrates a methodology for time-domain and time-accurate nonlinear, direct and adjoint simulations of unsteady flows and aeroacoustics for multi-component systems in relative motion. Here, the principal effort is directed towards mitigating the problem of distortion and contamination of the <em>adjoint</em> field at the moving interface, through a computationally lightweight, high-order sliding plane approach for which the adjoint equivalent is simple to obtain. This effort requires an attentive treatment of the interface conditions that surpasses the requirements of the more common forward (primary) problem. Sensitivity of a given quantity of interest from a time-varying flow with respect to a large number of parameters is then obtained through the adjoint operator, which is evaluated using nonlinear-adjoint looping. This technique is implemented using checkpointing and the PETSc <span>TSAdjoint</span> library and, after validation, applications including a rotor–stator interaction problem are presented.</div></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"307 \",\"pages\":\"Article 109421\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465524003448\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524003448","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文展示了一种对相对运动的多组件系统的非稳态流动和气动声学进行时域和时间精确的非线性、直接和辅助模拟的方法。在这里,主要工作是通过一种计算轻量级的高阶滑动平面方法来缓解运动界面上的临界场失真和污染问题。这项工作要求对界面条件进行细致的处理,这超出了更常见的正向(主要)问题的要求。然后,通过使用非线性关节循环进行评估的邻接算子,可获得时变流中给定相关量对大量参数的敏感性。该技术使用检查点和 PETSc TSAdjoint 库实现,经过验证后,介绍了包括转子-定子相互作用问题在内的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sliding plane formalism for aeroacoustic and adjoint-based sensitivity calculations
This paper demonstrates a methodology for time-domain and time-accurate nonlinear, direct and adjoint simulations of unsteady flows and aeroacoustics for multi-component systems in relative motion. Here, the principal effort is directed towards mitigating the problem of distortion and contamination of the adjoint field at the moving interface, through a computationally lightweight, high-order sliding plane approach for which the adjoint equivalent is simple to obtain. This effort requires an attentive treatment of the interface conditions that surpasses the requirements of the more common forward (primary) problem. Sensitivity of a given quantity of interest from a time-varying flow with respect to a large number of parameters is then obtained through the adjoint operator, which is evaluated using nonlinear-adjoint looping. This technique is implemented using checkpointing and the PETSc TSAdjoint library and, after validation, applications including a rotor–stator interaction problem are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信