{"title":"支配复合体、邻域复合体和组合亚历山大对偶","authors":"Takahiro Matsushita , Shun Wakatsuki","doi":"10.1016/j.jcta.2024.105978","DOIUrl":null,"url":null,"abstract":"<div><div>We show that the dominance complex <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a graph <em>G</em> coincides with the combinatorial Alexander dual of the neighborhood complex <span><math><mi>N</mi><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span> of the complement of <em>G</em>. Using this, we obtain a relation between the chromatic number <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em> and the homology group of <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. We also obtain several known results related to dominance complexes from well-known facts of neighborhood complexes. After that, we suggest a new method for computing the homology groups of the dominance complexes, using independence complexes of simple graphs. We show that several known computations of homology groups of dominance complexes can be reduced to known computations of independence complexes. Finally, we determine the homology group of <span><math><mi>D</mi><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>×</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> by determining the homotopy types of the independence complex of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>×</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>×</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"211 ","pages":"Article 105978"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dominance complexes, neighborhood complexes and combinatorial Alexander duals\",\"authors\":\"Takahiro Matsushita , Shun Wakatsuki\",\"doi\":\"10.1016/j.jcta.2024.105978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We show that the dominance complex <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a graph <em>G</em> coincides with the combinatorial Alexander dual of the neighborhood complex <span><math><mi>N</mi><mo>(</mo><mover><mrow><mi>G</mi></mrow><mo>‾</mo></mover><mo>)</mo></math></span> of the complement of <em>G</em>. Using this, we obtain a relation between the chromatic number <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em> and the homology group of <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. We also obtain several known results related to dominance complexes from well-known facts of neighborhood complexes. After that, we suggest a new method for computing the homology groups of the dominance complexes, using independence complexes of simple graphs. We show that several known computations of homology groups of dominance complexes can be reduced to known computations of independence complexes. Finally, we determine the homology group of <span><math><mi>D</mi><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>×</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>)</mo></math></span> by determining the homotopy types of the independence complex of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>×</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>×</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"211 \",\"pages\":\"Article 105978\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524001171\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524001171","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了图 G 的支配复数 D(G) 与 G 的补集的邻域复数 N(G‾) 的组合亚历山大对偶重合,并由此得到了 G 的色度数 χ(G) 与 D(G) 的同调群之间的关系。我们还从邻接复数的著名事实中得到了几个与支配复数有关的已知结果。之后,我们提出了一种利用简单图的独立复数计算支配复数同调群的新方法。我们证明了支配复数同调群的几种已知计算方法可以简化为独立复数的已知计算方法。最后,我们通过确定 Pn×P3×P2 独立复数的同调类型来确定 D(Pn×P3) 的同调群。
Dominance complexes, neighborhood complexes and combinatorial Alexander duals
We show that the dominance complex of a graph G coincides with the combinatorial Alexander dual of the neighborhood complex of the complement of G. Using this, we obtain a relation between the chromatic number of G and the homology group of . We also obtain several known results related to dominance complexes from well-known facts of neighborhood complexes. After that, we suggest a new method for computing the homology groups of the dominance complexes, using independence complexes of simple graphs. We show that several known computations of homology groups of dominance complexes can be reduced to known computations of independence complexes. Finally, we determine the homology group of by determining the homotopy types of the independence complex of .
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.