Filipe Miranda , Diogo Mendes , José Miguel Castro , Paulo Rosa-Santos , Francisco Taveira-Pinto , Tiago Fazeres-Ferradosa
{"title":"理想化浮动海藻养殖场引起的波浪阻尼物理模型研究","authors":"Filipe Miranda , Diogo Mendes , José Miguel Castro , Paulo Rosa-Santos , Francisco Taveira-Pinto , Tiago Fazeres-Ferradosa","doi":"10.1016/j.coastaleng.2024.104648","DOIUrl":null,"url":null,"abstract":"<div><div>A physical modelling study was carried out to investigate random wave damping promoted by an idealized floating kelp farm. The experimental conditions spanned intermediate water depths and both linear and nonlinear water waves. Unlike previous studies of wave damping promoted by vegetation, the floating kelp farm was placed close to the water surface with a ratio between vegetation height and water depth close to 0.25. The wave transmission coefficient induced by the floating kelp farm ranged between 0.56 and 0.96. This coefficient decreased for longer floating kelp farms and it was a function of the ratio between kelp farm length and incident wavelength and of the relative wave depth. Spectral analysis showed that wave damping was not frequency-dependent for wave frequencies close to the peak frequency. The wave transmission coefficients of a floating kelp farm with about 100 culture lines and with an extension of approximately 200 m were similar to those of submerged detached breakwaters with a relative crest freeboard smaller than −0.4. Furthermore, the bulk drag coefficient of near-surface idealized floating kelp farms can be modelled as a function of the Keulegan-Carpenter number. This study highlights the potential viability of nature-based solutions such as floating kelp farms for coastal protection.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"195 ","pages":"Article 104648"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical modelling study on wave damping induced by an idealized floating kelp farm\",\"authors\":\"Filipe Miranda , Diogo Mendes , José Miguel Castro , Paulo Rosa-Santos , Francisco Taveira-Pinto , Tiago Fazeres-Ferradosa\",\"doi\":\"10.1016/j.coastaleng.2024.104648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A physical modelling study was carried out to investigate random wave damping promoted by an idealized floating kelp farm. The experimental conditions spanned intermediate water depths and both linear and nonlinear water waves. Unlike previous studies of wave damping promoted by vegetation, the floating kelp farm was placed close to the water surface with a ratio between vegetation height and water depth close to 0.25. The wave transmission coefficient induced by the floating kelp farm ranged between 0.56 and 0.96. This coefficient decreased for longer floating kelp farms and it was a function of the ratio between kelp farm length and incident wavelength and of the relative wave depth. Spectral analysis showed that wave damping was not frequency-dependent for wave frequencies close to the peak frequency. The wave transmission coefficients of a floating kelp farm with about 100 culture lines and with an extension of approximately 200 m were similar to those of submerged detached breakwaters with a relative crest freeboard smaller than −0.4. Furthermore, the bulk drag coefficient of near-surface idealized floating kelp farms can be modelled as a function of the Keulegan-Carpenter number. This study highlights the potential viability of nature-based solutions such as floating kelp farms for coastal protection.</div></div>\",\"PeriodicalId\":50996,\"journal\":{\"name\":\"Coastal Engineering\",\"volume\":\"195 \",\"pages\":\"Article 104648\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378383924001960\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383924001960","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Physical modelling study on wave damping induced by an idealized floating kelp farm
A physical modelling study was carried out to investigate random wave damping promoted by an idealized floating kelp farm. The experimental conditions spanned intermediate water depths and both linear and nonlinear water waves. Unlike previous studies of wave damping promoted by vegetation, the floating kelp farm was placed close to the water surface with a ratio between vegetation height and water depth close to 0.25. The wave transmission coefficient induced by the floating kelp farm ranged between 0.56 and 0.96. This coefficient decreased for longer floating kelp farms and it was a function of the ratio between kelp farm length and incident wavelength and of the relative wave depth. Spectral analysis showed that wave damping was not frequency-dependent for wave frequencies close to the peak frequency. The wave transmission coefficients of a floating kelp farm with about 100 culture lines and with an extension of approximately 200 m were similar to those of submerged detached breakwaters with a relative crest freeboard smaller than −0.4. Furthermore, the bulk drag coefficient of near-surface idealized floating kelp farms can be modelled as a function of the Keulegan-Carpenter number. This study highlights the potential viability of nature-based solutions such as floating kelp farms for coastal protection.
期刊介绍:
Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.