Ai-Wei Guan , Chuan-Fu Yang , Natalia P. Bondarenko
{"title":"用谱映射法解决巴西隆逆问题","authors":"Ai-Wei Guan , Chuan-Fu Yang , Natalia P. Bondarenko","doi":"10.1016/j.jde.2024.10.044","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider Barcilon's inverse problem, which consists in the recovery of the fourth-order differential operator from three spectra. The relationship of Barcilon's three spectra with the Weyl-Yurko matrix is obtained. Moreover, the uniqueness theorem for the inverse problem solution is proved by developing the ideas of the method of spectral mappings. Our approach allows us to obtain the result for the general case of complex-valued distributional coefficients. In the future, the methods and the results of this paper can be generalized to differential operators of orders greater than 4 and used for further development of the inverse problem theory for higher-order differential operators.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1881-1898"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving Barcilon's inverse problems by the method of spectral mappings\",\"authors\":\"Ai-Wei Guan , Chuan-Fu Yang , Natalia P. Bondarenko\",\"doi\":\"10.1016/j.jde.2024.10.044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider Barcilon's inverse problem, which consists in the recovery of the fourth-order differential operator from three spectra. The relationship of Barcilon's three spectra with the Weyl-Yurko matrix is obtained. Moreover, the uniqueness theorem for the inverse problem solution is proved by developing the ideas of the method of spectral mappings. Our approach allows us to obtain the result for the general case of complex-valued distributional coefficients. In the future, the methods and the results of this paper can be generalized to differential operators of orders greater than 4 and used for further development of the inverse problem theory for higher-order differential operators.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 1881-1898\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624007071\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007071","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Solving Barcilon's inverse problems by the method of spectral mappings
In this paper, we consider Barcilon's inverse problem, which consists in the recovery of the fourth-order differential operator from three spectra. The relationship of Barcilon's three spectra with the Weyl-Yurko matrix is obtained. Moreover, the uniqueness theorem for the inverse problem solution is proved by developing the ideas of the method of spectral mappings. Our approach allows us to obtain the result for the general case of complex-valued distributional coefficients. In the future, the methods and the results of this paper can be generalized to differential operators of orders greater than 4 and used for further development of the inverse problem theory for higher-order differential operators.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics