具有退化粘度的可压缩纳维-斯托克斯方程自由边界问题的全局经典解

IF 2.4 2区 数学 Q1 MATHEMATICS
Andrew Yang , Xu Zhao , Wenshu Zhou
{"title":"具有退化粘度的可压缩纳维-斯托克斯方程自由边界问题的全局经典解","authors":"Andrew Yang ,&nbsp;Xu Zhao ,&nbsp;Wenshu Zhou","doi":"10.1016/j.jde.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>This paper concerns with the one dimensional compressible isentropic Navier–Stokes equations with a free boundary separating fluid and vacuum when the viscosity coefficient depends on the density. Precisely, the pressure <em>P</em> and the viscosity coefficient <em>μ</em> are assumed to be proportional to <span><math><msup><mrow><mi>ρ</mi></mrow><mrow><mi>γ</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>ρ</mi></mrow><mrow><mi>θ</mi></mrow></msup></math></span> respectively, where <em>ρ</em> is the density, and <em>γ</em> and <em>θ</em> are constants. We establish the unique solvability in the framework of global classical solutions for this problem when <span><math><mi>γ</mi><mo>≥</mo><mi>θ</mi><mo>&gt;</mo><mn>1</mn></math></span>. Since the previous results on this topic are limited to the case when <span><math><mi>θ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, the result in this paper fills in the gap for <span><math><mi>θ</mi><mo>&gt;</mo><mn>1</mn></math></span>. Note that the key estimate is to show that the density has a positive lower bound and the new ingredient of the proof relies on the study of the quasilinear parabolic equation for the viscosity coefficient by reducing the nonlocal terms in order to apply the comparison principle.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1837-1860"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global classical solutions of free boundary problem of compressible Navier–Stokes equations with degenerate viscosity\",\"authors\":\"Andrew Yang ,&nbsp;Xu Zhao ,&nbsp;Wenshu Zhou\",\"doi\":\"10.1016/j.jde.2024.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper concerns with the one dimensional compressible isentropic Navier–Stokes equations with a free boundary separating fluid and vacuum when the viscosity coefficient depends on the density. Precisely, the pressure <em>P</em> and the viscosity coefficient <em>μ</em> are assumed to be proportional to <span><math><msup><mrow><mi>ρ</mi></mrow><mrow><mi>γ</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>ρ</mi></mrow><mrow><mi>θ</mi></mrow></msup></math></span> respectively, where <em>ρ</em> is the density, and <em>γ</em> and <em>θ</em> are constants. We establish the unique solvability in the framework of global classical solutions for this problem when <span><math><mi>γ</mi><mo>≥</mo><mi>θ</mi><mo>&gt;</mo><mn>1</mn></math></span>. Since the previous results on this topic are limited to the case when <span><math><mi>θ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, the result in this paper fills in the gap for <span><math><mi>θ</mi><mo>&gt;</mo><mn>1</mn></math></span>. Note that the key estimate is to show that the density has a positive lower bound and the new ingredient of the proof relies on the study of the quasilinear parabolic equation for the viscosity coefficient by reducing the nonlocal terms in order to apply the comparison principle.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 1837-1860\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624007204\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007204","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文涉及一维可压缩等熵 Navier-Stokes 方程,该方程的自由边界将流体和真空隔开,此时粘度系数取决于密度。确切地说,假设压力 P 和粘度系数 μ 分别与 ργ 和 ρθ 成比例,其中 ρ 是密度,γ 和 θ 是常数。我们在全局经典解的框架内建立了当γ≥θ>1 时该问题的唯一可解性。 由于之前有关该主题的结果仅限于θ∈(0,1]的情况,本文的结果填补了θ>1 的空白。需要注意的是,关键的估计是证明密度有一个正下限,而证明的新内容依赖于对粘性系数的准线性抛物方程的研究,通过减少非局部项来应用比较原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global classical solutions of free boundary problem of compressible Navier–Stokes equations with degenerate viscosity
This paper concerns with the one dimensional compressible isentropic Navier–Stokes equations with a free boundary separating fluid and vacuum when the viscosity coefficient depends on the density. Precisely, the pressure P and the viscosity coefficient μ are assumed to be proportional to ργ and ρθ respectively, where ρ is the density, and γ and θ are constants. We establish the unique solvability in the framework of global classical solutions for this problem when γθ>1. Since the previous results on this topic are limited to the case when θ(0,1], the result in this paper fills in the gap for θ>1. Note that the key estimate is to show that the density has a positive lower bound and the new ingredient of the proof relies on the study of the quasilinear parabolic equation for the viscosity coefficient by reducing the nonlocal terms in order to apply the comparison principle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信