利用 NLP 和网络知识图谱协调位置:美国专利交易案例研究

IF 2.2 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE
Grazia Sveva Ascione , Andrea Vezzulli
{"title":"利用 NLP 和网络知识图谱协调位置:美国专利交易案例研究","authors":"Grazia Sveva Ascione ,&nbsp;Andrea Vezzulli","doi":"10.1016/j.wpi.2024.102320","DOIUrl":null,"url":null,"abstract":"<div><div>In the present study, we introduce a novel methodology for the harmonization and standardization of locations associated with patent transactions recorded at the USPTO from 2005 to 2022. Using natural language processing (NLP) techniques in conjunction with search engine-based web knowledge graphs, our method comprises four phases: data pre-processing, semantic clustering, exploitation of web-knowledge graphs, and API-driven harmonization. Initiating our analysis with a dataset of 63,838 unique locations, our methodology effectively reduces this number by more than 50 %. This approach exhibits an accuracy rate of approximately 92 %. The resulting geolocated dataset of companies’ patent transactions offers a valuable resource for fine-grained geographical analyses of the markets for technology; in particular, we provide examples of relevant economic insights which can be learned from looking at the geographical patterns of those transactions.</div></div>","PeriodicalId":51794,"journal":{"name":"World Patent Information","volume":"79 ","pages":"Article 102320"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging NLP and web knowledge graphs to harmonize locations: A case study on US patent transactions\",\"authors\":\"Grazia Sveva Ascione ,&nbsp;Andrea Vezzulli\",\"doi\":\"10.1016/j.wpi.2024.102320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the present study, we introduce a novel methodology for the harmonization and standardization of locations associated with patent transactions recorded at the USPTO from 2005 to 2022. Using natural language processing (NLP) techniques in conjunction with search engine-based web knowledge graphs, our method comprises four phases: data pre-processing, semantic clustering, exploitation of web-knowledge graphs, and API-driven harmonization. Initiating our analysis with a dataset of 63,838 unique locations, our methodology effectively reduces this number by more than 50 %. This approach exhibits an accuracy rate of approximately 92 %. The resulting geolocated dataset of companies’ patent transactions offers a valuable resource for fine-grained geographical analyses of the markets for technology; in particular, we provide examples of relevant economic insights which can be learned from looking at the geographical patterns of those transactions.</div></div>\",\"PeriodicalId\":51794,\"journal\":{\"name\":\"World Patent Information\",\"volume\":\"79 \",\"pages\":\"Article 102320\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Patent Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0172219024000607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Patent Information","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0172219024000607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们介绍了一种新方法,用于统一和标准化美国专利商标局 2005 年至 2022 年记录的专利交易相关位置。利用自然语言处理 (NLP) 技术和基于搜索引擎的网络知识图谱,我们的方法包括四个阶段:数据预处理、语义聚类、网络知识图谱利用和 API 驱动的统一。我们的分析以一个包含 63,838 个独特地点的数据集为起点,我们的方法有效地将这一数字减少了 50% 以上。这种方法的准确率约为 92%。由此产生的公司专利交易地理位置数据集为技术市场的精细地理分析提供了宝贵的资源;特别是,我们举例说明了从这些交易的地理模式中可以了解到的相关经济见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging NLP and web knowledge graphs to harmonize locations: A case study on US patent transactions
In the present study, we introduce a novel methodology for the harmonization and standardization of locations associated with patent transactions recorded at the USPTO from 2005 to 2022. Using natural language processing (NLP) techniques in conjunction with search engine-based web knowledge graphs, our method comprises four phases: data pre-processing, semantic clustering, exploitation of web-knowledge graphs, and API-driven harmonization. Initiating our analysis with a dataset of 63,838 unique locations, our methodology effectively reduces this number by more than 50 %. This approach exhibits an accuracy rate of approximately 92 %. The resulting geolocated dataset of companies’ patent transactions offers a valuable resource for fine-grained geographical analyses of the markets for technology; in particular, we provide examples of relevant economic insights which can be learned from looking at the geographical patterns of those transactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World Patent Information
World Patent Information INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
3.50
自引率
18.50%
发文量
40
期刊介绍: The aim of World Patent Information is to provide a worldwide forum for the exchange of information between people working professionally in the field of Industrial Property information and documentation and to promote the widest possible use of the associated literature. Regular features include: papers concerned with all aspects of Industrial Property information and documentation; new regulations pertinent to Industrial Property information and documentation; short reports on relevant meetings and conferences; bibliographies, together with book and literature reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信