Cesar S. Eschenazi , Wanderson J. Lambert , Marlon M. López-Flores , Dan Marchesin , Carlos F.B. Palmeira , Bradley J. Plohr
{"title":"用拓扑工具解决黎曼问题","authors":"Cesar S. Eschenazi , Wanderson J. Lambert , Marlon M. López-Flores , Dan Marchesin , Carlos F.B. Palmeira , Bradley J. Plohr","doi":"10.1016/j.jde.2024.11.002","DOIUrl":null,"url":null,"abstract":"<div><div>In previous work, we developed a topological framework for solving Riemann initial-value problems for a system of conservation laws. Its core is a differentiable manifold, called the wave manifold, with points representing shock and rarefaction waves. In the present paper, we construct, in detail, the three-dimensional wave manifold for a system of two conservation laws with quadratic flux functions. Using adapted coordinates, we derive explicit formulae for important surfaces and curves within the wave manifold and display them graphically. The surfaces subdivide the manifold into regions according to shock type, such as ones corresponding to the Lax admissibility criterion. The curves parametrize rarefaction, shock, and composite waves appearing in contiguous wave patterns. Whereas wave curves overlap in state space, they are disentangled within the wave manifold. We solve a Riemann problem by constructing a wave curve associated with the slow characteristic speed family, generating a surface from it using shock curves, and intersecting this surface with a fast family wave curve. This construction is applied to solve Riemann problems for several illustrative cases.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 2134-2174"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving Riemann problems with a topological tool\",\"authors\":\"Cesar S. Eschenazi , Wanderson J. Lambert , Marlon M. López-Flores , Dan Marchesin , Carlos F.B. Palmeira , Bradley J. Plohr\",\"doi\":\"10.1016/j.jde.2024.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In previous work, we developed a topological framework for solving Riemann initial-value problems for a system of conservation laws. Its core is a differentiable manifold, called the wave manifold, with points representing shock and rarefaction waves. In the present paper, we construct, in detail, the three-dimensional wave manifold for a system of two conservation laws with quadratic flux functions. Using adapted coordinates, we derive explicit formulae for important surfaces and curves within the wave manifold and display them graphically. The surfaces subdivide the manifold into regions according to shock type, such as ones corresponding to the Lax admissibility criterion. The curves parametrize rarefaction, shock, and composite waves appearing in contiguous wave patterns. Whereas wave curves overlap in state space, they are disentangled within the wave manifold. We solve a Riemann problem by constructing a wave curve associated with the slow characteristic speed family, generating a surface from it using shock curves, and intersecting this surface with a fast family wave curve. This construction is applied to solve Riemann problems for several illustrative cases.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 2134-2174\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624007174\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007174","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In previous work, we developed a topological framework for solving Riemann initial-value problems for a system of conservation laws. Its core is a differentiable manifold, called the wave manifold, with points representing shock and rarefaction waves. In the present paper, we construct, in detail, the three-dimensional wave manifold for a system of two conservation laws with quadratic flux functions. Using adapted coordinates, we derive explicit formulae for important surfaces and curves within the wave manifold and display them graphically. The surfaces subdivide the manifold into regions according to shock type, such as ones corresponding to the Lax admissibility criterion. The curves parametrize rarefaction, shock, and composite waves appearing in contiguous wave patterns. Whereas wave curves overlap in state space, they are disentangled within the wave manifold. We solve a Riemann problem by constructing a wave curve associated with the slow characteristic speed family, generating a surface from it using shock curves, and intersecting this surface with a fast family wave curve. This construction is applied to solve Riemann problems for several illustrative cases.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics