介质对疾病渐进动态影响的数学研究

Q1 Mathematics
Lahcen Boulaasair , Hassane Bouzahir , N. Seshagiri Rao , Salma Haque , Nabil Mlaiki
{"title":"介质对疾病渐进动态影响的数学研究","authors":"Lahcen Boulaasair ,&nbsp;Hassane Bouzahir ,&nbsp;N. Seshagiri Rao ,&nbsp;Salma Haque ,&nbsp;Nabil Mlaiki","doi":"10.1016/j.padiff.2024.100982","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the asymptotic behavior of a stochastic epidemic model that accounts for the impact of media coverage. The initial focus lies on determining the conditions leading to the exponential extinction of the disease. Additionally, we investigate the weak convergence of the probability distribution of the stochastic process <span><math><mrow><mi>N</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>, representing the total population, to a one-dimensional stochastic process with density calculated through the Fokker–Planck equation. Subsequently, we demonstrate the persistent nature of the disease and utilize Has’minskii theory to establish the presence of a unique ergodic stationary distribution for our stochastic epidemic model. Finally, numerical simulations are conducted to validate the theoretical findings.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100982"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mathematical study of the influence of media on the asymptotic dynamics of diseases\",\"authors\":\"Lahcen Boulaasair ,&nbsp;Hassane Bouzahir ,&nbsp;N. Seshagiri Rao ,&nbsp;Salma Haque ,&nbsp;Nabil Mlaiki\",\"doi\":\"10.1016/j.padiff.2024.100982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the asymptotic behavior of a stochastic epidemic model that accounts for the impact of media coverage. The initial focus lies on determining the conditions leading to the exponential extinction of the disease. Additionally, we investigate the weak convergence of the probability distribution of the stochastic process <span><math><mrow><mi>N</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span>, representing the total population, to a one-dimensional stochastic process with density calculated through the Fokker–Planck equation. Subsequently, we demonstrate the persistent nature of the disease and utilize Has’minskii theory to establish the presence of a unique ergodic stationary distribution for our stochastic epidemic model. Finally, numerical simulations are conducted to validate the theoretical findings.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100982\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了一种考虑到媒体报道影响的随机流行病模型的渐进行为。最初的重点在于确定导致疾病指数式消亡的条件。此外,我们还研究了代表总人口的随机过程 N(t) 的概率分布向通过福克-普朗克方程计算密度的一维随机过程的弱收敛性。随后,我们证明了疾病的持续性,并利用 Has'minskii 理论确定了我们的随机流行病模型存在唯一的遍历静态分布。最后,我们进行了数值模拟来验证理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A mathematical study of the influence of media on the asymptotic dynamics of diseases
This study explores the asymptotic behavior of a stochastic epidemic model that accounts for the impact of media coverage. The initial focus lies on determining the conditions leading to the exponential extinction of the disease. Additionally, we investigate the weak convergence of the probability distribution of the stochastic process N(t), representing the total population, to a one-dimensional stochastic process with density calculated through the Fokker–Planck equation. Subsequently, we demonstrate the persistent nature of the disease and utilize Has’minskii theory to establish the presence of a unique ergodic stationary distribution for our stochastic epidemic model. Finally, numerical simulations are conducted to validate the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信