范德瓦耳斯气体系统分析研究:对分岔、光学模式以及敏感性和混沌分析的动力学见解

Q1 Mathematics
Muhammad Moneeb Tariq , Muhammad Aziz-ur-Rehman , Muhammad Bilal Riaz
{"title":"范德瓦耳斯气体系统分析研究:对分岔、光学模式以及敏感性和混沌分析的动力学见解","authors":"Muhammad Moneeb Tariq ,&nbsp;Muhammad Aziz-ur-Rehman ,&nbsp;Muhammad Bilal Riaz","doi":"10.1016/j.padiff.2024.100983","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on obtaining exact solutions for the nonlinear Van der Waals gas system using the modified Khater method. Renowned as one of the latest and most precise analytical schemes for nonlinear evolution equations, this method has proven its efficacy by generating diverse solutions for the model under consideration. The governing equation is transformed into an ordinary differential equation through a well-suited wave transformation. This analytical simplification makes it possible to use the provided methods to derive trigonometric, rational, and hyperbolic solutions. To illuminate the physical behavior of the model, graphical plots of selected solutions are presented. By selecting appropriate values for arbitrary factors, this visual representation enhances comprehension of the dynamical system. Furthermore, the system undergoes a certain transformation to become a planar dynamical system, and the bifurcation analysis is examined. Additionally, the sensitivity analysis of the dynamical system is conducted using the Runge–Kutta method to confirm that slight alterations in the initial conditions have minimal impact on the stability of the solution. The presence of chaotic dynamics in the Van der Waals gas system is explored by introducing a perturbed term in the dynamical system. Two and three-dimensional phase profiles are used to illustrate these chaotic behaviors.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100983"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analytical investigation of the Van Der Waals gas system: Dynamics insights into bifurcation, optical pattern along with sensitivity and chaotic analysis\",\"authors\":\"Muhammad Moneeb Tariq ,&nbsp;Muhammad Aziz-ur-Rehman ,&nbsp;Muhammad Bilal Riaz\",\"doi\":\"10.1016/j.padiff.2024.100983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper focuses on obtaining exact solutions for the nonlinear Van der Waals gas system using the modified Khater method. Renowned as one of the latest and most precise analytical schemes for nonlinear evolution equations, this method has proven its efficacy by generating diverse solutions for the model under consideration. The governing equation is transformed into an ordinary differential equation through a well-suited wave transformation. This analytical simplification makes it possible to use the provided methods to derive trigonometric, rational, and hyperbolic solutions. To illuminate the physical behavior of the model, graphical plots of selected solutions are presented. By selecting appropriate values for arbitrary factors, this visual representation enhances comprehension of the dynamical system. Furthermore, the system undergoes a certain transformation to become a planar dynamical system, and the bifurcation analysis is examined. Additionally, the sensitivity analysis of the dynamical system is conducted using the Runge–Kutta method to confirm that slight alterations in the initial conditions have minimal impact on the stability of the solution. The presence of chaotic dynamics in the Van der Waals gas system is explored by introducing a perturbed term in the dynamical system. Two and three-dimensional phase profiles are used to illustrate these chaotic behaviors.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100983\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文的重点是利用修正 Khater 方法获得非线性范德华气体系统的精确解。该方法被誉为非线性演化方程最新、最精确的分析方案之一,它为所考虑的模型生成了多种解,证明了其有效性。通过适当的波变换,支配方程被转化为常微分方程。这种分析简化使得使用所提供的方法推导三角、有理和双曲解成为可能。为了阐明模型的物理行为,我们展示了所选解法的图解。通过为任意因子选择适当的值,这种可视化的表示方法增强了对动力学系统的理解。此外,该系统经过一定的转换后成为平面动力系统,并对分岔分析进行了研究。此外,还使用 Runge-Kutta 方法对动态系统进行了敏感性分析,以确认初始条件的微小变化对解法稳定性的影响微乎其微。通过在动力学系统中引入扰动项,探讨了范德华气体系统中是否存在混沌动力学。二维和三维相剖面被用来说明这些混沌行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analytical investigation of the Van Der Waals gas system: Dynamics insights into bifurcation, optical pattern along with sensitivity and chaotic analysis
This paper focuses on obtaining exact solutions for the nonlinear Van der Waals gas system using the modified Khater method. Renowned as one of the latest and most precise analytical schemes for nonlinear evolution equations, this method has proven its efficacy by generating diverse solutions for the model under consideration. The governing equation is transformed into an ordinary differential equation through a well-suited wave transformation. This analytical simplification makes it possible to use the provided methods to derive trigonometric, rational, and hyperbolic solutions. To illuminate the physical behavior of the model, graphical plots of selected solutions are presented. By selecting appropriate values for arbitrary factors, this visual representation enhances comprehension of the dynamical system. Furthermore, the system undergoes a certain transformation to become a planar dynamical system, and the bifurcation analysis is examined. Additionally, the sensitivity analysis of the dynamical system is conducted using the Runge–Kutta method to confirm that slight alterations in the initial conditions have minimal impact on the stability of the solution. The presence of chaotic dynamics in the Van der Waals gas system is explored by introducing a perturbed term in the dynamical system. Two and three-dimensional phase profiles are used to illustrate these chaotic behaviors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信