涉及阿坦加纳-巴列阿努分数算子的考奇反应-扩散方程分析

Q1 Mathematics
Hassan Kamil Jassim, Ali Latif Arif
{"title":"涉及阿坦加纳-巴列阿努分数算子的考奇反应-扩散方程分析","authors":"Hassan Kamil Jassim,&nbsp;Ali Latif Arif","doi":"10.1016/j.padiff.2024.100981","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the Cauchy reaction-diffusion equation (CRDE) with the Atangana-Baleanu differential operator. The existence and uniqueness of solutions to fractional starting value issues are begun using the fixed-point theorem and contraction principle, respectively. The proposed study uses the natural variation iteration technique (NVIM) to get an approximate solution for nonlinear fractional reaction-diffusion equations. This study's approximate answers are compared to other solutions found using known methodologies, and the results are discussed. The devised technique has benefits in terms of accuracy and computational cost efficiency, which may be used to solve nonlinear fractional reaction-diffusion equations.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100981"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Cauchy reaction-diffusion equations involving Atangana-Baleanu fractional operator\",\"authors\":\"Hassan Kamil Jassim,&nbsp;Ali Latif Arif\",\"doi\":\"10.1016/j.padiff.2024.100981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the Cauchy reaction-diffusion equation (CRDE) with the Atangana-Baleanu differential operator. The existence and uniqueness of solutions to fractional starting value issues are begun using the fixed-point theorem and contraction principle, respectively. The proposed study uses the natural variation iteration technique (NVIM) to get an approximate solution for nonlinear fractional reaction-diffusion equations. This study's approximate answers are compared to other solutions found using known methodologies, and the results are discussed. The devised technique has benefits in terms of accuracy and computational cost efficiency, which may be used to solve nonlinear fractional reaction-diffusion equations.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100981\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266681812400367X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266681812400367X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了带有 Atangana-Baleanu 微分算子的 Cauchy 反应扩散方程(CRDE)。分别利用定点定理和收缩原理开始研究分数起始值问题解的存在性和唯一性。建议的研究使用自然变异迭代技术(NVIM)来获得非线性分数反应扩散方程的近似解。本研究的近似解与使用已知方法找到的其他解进行了比较,并对结果进行了讨论。所设计的技术在精度和计算成本效率方面都有优势,可用于求解非线性分数反应扩散方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Cauchy reaction-diffusion equations involving Atangana-Baleanu fractional operator
This study investigates the Cauchy reaction-diffusion equation (CRDE) with the Atangana-Baleanu differential operator. The existence and uniqueness of solutions to fractional starting value issues are begun using the fixed-point theorem and contraction principle, respectively. The proposed study uses the natural variation iteration technique (NVIM) to get an approximate solution for nonlinear fractional reaction-diffusion equations. This study's approximate answers are compared to other solutions found using known methodologies, and the results are discussed. The devised technique has benefits in terms of accuracy and computational cost efficiency, which may be used to solve nonlinear fractional reaction-diffusion equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信